没有证据表明质膜电位无关的细胞穿透肽直接易位

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ali Hallaj, Francisco Tomas Ribeiro, Christian Widmann
{"title":"没有证据表明质膜电位无关的细胞穿透肽直接易位","authors":"Ali Hallaj,&nbsp;Francisco Tomas Ribeiro,&nbsp;Christian Widmann","doi":"10.1002/psc.70014","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cell-penetrating peptides (CPPs) are small peptides that can carry bioactive cargoes into cells. CPPs access the cell's cytosol via direct translocation across the plasma membrane. We and others have shown that direct translocation of CPPs occurs through water pores that are formed upon hyperpolarization of the cell's membrane. Direct translocation through water pores can therefore be blocked by depolarizing the plasma membrane. Other direct translocation mechanisms have been proposed that would not rely on membrane hyperpolarization. It has been reported, for example, that in HEK cells, CPP translocation occurs in a plasma membrane potential-independent manner, in contrast to HeLa cells, where CPP access to the cytosol required plasma membrane hyperpolarization. To address these apparent discrepant data, we have tested the requirement of plasma membrane hyperpolarization in a series of cell lines, including HEK and HeLa cells, for CPP direct translocation. Our data, obtained from a wide range of CPP concentrations, show that efficient direct translocation always requires plasma membrane hyperpolarization. We discuss the possible reasons why earlier studies have not evidenced the importance of the plasma membrane potential in the cytosolic uptake of CPPs in some cell lines.</p>\n </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No Evidence for Plasma Membrane Potential-Independent Cell Penetrating Peptide Direct Translocation\",\"authors\":\"Ali Hallaj,&nbsp;Francisco Tomas Ribeiro,&nbsp;Christian Widmann\",\"doi\":\"10.1002/psc.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cell-penetrating peptides (CPPs) are small peptides that can carry bioactive cargoes into cells. CPPs access the cell's cytosol via direct translocation across the plasma membrane. We and others have shown that direct translocation of CPPs occurs through water pores that are formed upon hyperpolarization of the cell's membrane. Direct translocation through water pores can therefore be blocked by depolarizing the plasma membrane. Other direct translocation mechanisms have been proposed that would not rely on membrane hyperpolarization. It has been reported, for example, that in HEK cells, CPP translocation occurs in a plasma membrane potential-independent manner, in contrast to HeLa cells, where CPP access to the cytosol required plasma membrane hyperpolarization. To address these apparent discrepant data, we have tested the requirement of plasma membrane hyperpolarization in a series of cell lines, including HEK and HeLa cells, for CPP direct translocation. Our data, obtained from a wide range of CPP concentrations, show that efficient direct translocation always requires plasma membrane hyperpolarization. We discuss the possible reasons why earlier studies have not evidenced the importance of the plasma membrane potential in the cytosolic uptake of CPPs in some cell lines.</p>\\n </div>\",\"PeriodicalId\":16946,\"journal\":{\"name\":\"Journal of Peptide Science\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Peptide Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psc.70014\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞穿透肽(CPPs)是一种可以携带生物活性物质进入细胞的小肽。CPPs通过跨质膜的直接易位进入细胞质溶胶。我们和其他人已经证明,CPPs的直接易位发生在细胞膜超极化形成的水孔中。因此,通过水孔的直接转运可以通过使质膜去极化来阻止。已经提出了其他不依赖于膜超极化的直接易位机制。例如,据报道,在HEK细胞中,CPP易位以质膜电位无关的方式发生,而在HeLa细胞中,CPP进入细胞质溶胶需要质膜超极化。为了解决这些明显的差异数据,我们测试了一系列细胞系(包括HEK和HeLa细胞)对CPP直接转运的质膜超极化要求。我们从大范围的CPP浓度中获得的数据表明,有效的直接转运总是需要质膜超极化。我们讨论了为什么早期的研究没有证明在某些细胞系中胞浆摄取CPPs的质膜电位的重要性的可能原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No Evidence for Plasma Membrane Potential-Independent Cell Penetrating Peptide Direct Translocation

Cell-penetrating peptides (CPPs) are small peptides that can carry bioactive cargoes into cells. CPPs access the cell's cytosol via direct translocation across the plasma membrane. We and others have shown that direct translocation of CPPs occurs through water pores that are formed upon hyperpolarization of the cell's membrane. Direct translocation through water pores can therefore be blocked by depolarizing the plasma membrane. Other direct translocation mechanisms have been proposed that would not rely on membrane hyperpolarization. It has been reported, for example, that in HEK cells, CPP translocation occurs in a plasma membrane potential-independent manner, in contrast to HeLa cells, where CPP access to the cytosol required plasma membrane hyperpolarization. To address these apparent discrepant data, we have tested the requirement of plasma membrane hyperpolarization in a series of cell lines, including HEK and HeLa cells, for CPP direct translocation. Our data, obtained from a wide range of CPP concentrations, show that efficient direct translocation always requires plasma membrane hyperpolarization. We discuss the possible reasons why earlier studies have not evidenced the importance of the plasma membrane potential in the cytosolic uptake of CPPs in some cell lines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Peptide Science
Journal of Peptide Science 生物-分析化学
CiteScore
3.40
自引率
4.80%
发文量
83
审稿时长
1.7 months
期刊介绍: The official Journal of the European Peptide Society EPS The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews. The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信