{"title":"层状富营养化湖泊表层沉积物季节性磷酸盐储存的生物源性多磷酸盐调控","authors":"Lucas Schröder, Peter Schmieder, Michael Hupfer","doi":"10.1007/s10533-025-01230-x","DOIUrl":null,"url":null,"abstract":"<div><p>Polyphosphate is formed by polyphosphate-accumulating organisms occurring in various terrestrial, freshwater, and marine ecosystems as well as industrial environments. Although polyphosphate-accumulating organisms and polyphosphate have been well studied in enhanced biological phosphorus (P) removal from wastewater treatment plants, their role in the internal P cycle of natural lakes remains unclear. Several studies have shown that polyphosphate storage is widespread in lake sediments. In this study, <sup>31</sup>P nuclear magnetic resonance spectroscopy was used to analyse the seasonal dynamics of polyphosphate and its drivers at the sediment surface of three stratified German lakes with strong seasonality of hypolimnetic oxygen concentrations. Similar seasonal patterns of polyphosphate were observed in all three lakes. Polyphosphate content increased by a factor of three to five at the beginning of summer stratification, with the maximum content observed in May when oxygen was already very low. During this period, strong redox gradients prevailed within the topmost sediment layer, and highly soluble reactive P concentrations were present in the pore water due to the reductive release of P bound to iron(III)oxides and oxide-hydroxides. Polyphosphate acted as a temporary P storage and was released after a delay, which may mitigate sedimentary P release into the water body during the (early) summer stratification. The observed seasonal dynamics of polyphosphate at the sediment surface offer a novel insight into the link between the P and iron cycles in lakes.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01230-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Biogenic polyphosphate as relevant regulator of seasonal phosphate storage in surface sediments of stratified eutrophic lakes\",\"authors\":\"Lucas Schröder, Peter Schmieder, Michael Hupfer\",\"doi\":\"10.1007/s10533-025-01230-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyphosphate is formed by polyphosphate-accumulating organisms occurring in various terrestrial, freshwater, and marine ecosystems as well as industrial environments. Although polyphosphate-accumulating organisms and polyphosphate have been well studied in enhanced biological phosphorus (P) removal from wastewater treatment plants, their role in the internal P cycle of natural lakes remains unclear. Several studies have shown that polyphosphate storage is widespread in lake sediments. In this study, <sup>31</sup>P nuclear magnetic resonance spectroscopy was used to analyse the seasonal dynamics of polyphosphate and its drivers at the sediment surface of three stratified German lakes with strong seasonality of hypolimnetic oxygen concentrations. Similar seasonal patterns of polyphosphate were observed in all three lakes. Polyphosphate content increased by a factor of three to five at the beginning of summer stratification, with the maximum content observed in May when oxygen was already very low. During this period, strong redox gradients prevailed within the topmost sediment layer, and highly soluble reactive P concentrations were present in the pore water due to the reductive release of P bound to iron(III)oxides and oxide-hydroxides. Polyphosphate acted as a temporary P storage and was released after a delay, which may mitigate sedimentary P release into the water body during the (early) summer stratification. The observed seasonal dynamics of polyphosphate at the sediment surface offer a novel insight into the link between the P and iron cycles in lakes.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":\"168 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-025-01230-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-025-01230-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01230-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biogenic polyphosphate as relevant regulator of seasonal phosphate storage in surface sediments of stratified eutrophic lakes
Polyphosphate is formed by polyphosphate-accumulating organisms occurring in various terrestrial, freshwater, and marine ecosystems as well as industrial environments. Although polyphosphate-accumulating organisms and polyphosphate have been well studied in enhanced biological phosphorus (P) removal from wastewater treatment plants, their role in the internal P cycle of natural lakes remains unclear. Several studies have shown that polyphosphate storage is widespread in lake sediments. In this study, 31P nuclear magnetic resonance spectroscopy was used to analyse the seasonal dynamics of polyphosphate and its drivers at the sediment surface of three stratified German lakes with strong seasonality of hypolimnetic oxygen concentrations. Similar seasonal patterns of polyphosphate were observed in all three lakes. Polyphosphate content increased by a factor of three to five at the beginning of summer stratification, with the maximum content observed in May when oxygen was already very low. During this period, strong redox gradients prevailed within the topmost sediment layer, and highly soluble reactive P concentrations were present in the pore water due to the reductive release of P bound to iron(III)oxides and oxide-hydroxides. Polyphosphate acted as a temporary P storage and was released after a delay, which may mitigate sedimentary P release into the water body during the (early) summer stratification. The observed seasonal dynamics of polyphosphate at the sediment surface offer a novel insight into the link between the P and iron cycles in lakes.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.