{"title":"对具有极端质量比吸气的修正黑洞的约束","authors":"Chao Zhang, Guoyang Fu, Yungui Gong","doi":"10.1140/epjc/s10052-025-14100-5","DOIUrl":null,"url":null,"abstract":"<div><p>The low-energy effective action of String Theory introduces corrections to the dilaton-graviton sector, resulting in deformed black holes beyond general relativity. We analyze extreme mass-ratio inspiral systems (EMRIs), where a stellar-mass object spirals into a slowly rotating supermassive black hole including a distinct deviation parameter. This study examines the effects of this deformation on the rate of change of orbital energy and angular momentum, orbital evolution, and phase dynamics, incorporating leading-order post-Newtonian corrections. The String theory parameter <span>\\(\\alpha \\)</span> will accelerate the EMRI merger because of the extra energy and angular momentum fluxes carried away by corrections to the dilaton-graviton sector. With 1-year observations of EMRIs, we employ the Fisher information matrix method to evaluate the potential for detecting deviations from general relativity through space-based gravitational wave detectors that utilize time-delay interferometry to suppress laser noise. The constraint on modified black holes, <span>\\(\\varDelta \\alpha \\preceq 10^{-5}\\)</span>, is almost the same with and without the time-delay interferometry combination. This analysis enhances our understanding and underscores the crucial role of observations in advancing gravitational phenomena within String Theory.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14100-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The constraint on modified black holes with extreme mass ratio inspirals\",\"authors\":\"Chao Zhang, Guoyang Fu, Yungui Gong\",\"doi\":\"10.1140/epjc/s10052-025-14100-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The low-energy effective action of String Theory introduces corrections to the dilaton-graviton sector, resulting in deformed black holes beyond general relativity. We analyze extreme mass-ratio inspiral systems (EMRIs), where a stellar-mass object spirals into a slowly rotating supermassive black hole including a distinct deviation parameter. This study examines the effects of this deformation on the rate of change of orbital energy and angular momentum, orbital evolution, and phase dynamics, incorporating leading-order post-Newtonian corrections. The String theory parameter <span>\\\\(\\\\alpha \\\\)</span> will accelerate the EMRI merger because of the extra energy and angular momentum fluxes carried away by corrections to the dilaton-graviton sector. With 1-year observations of EMRIs, we employ the Fisher information matrix method to evaluate the potential for detecting deviations from general relativity through space-based gravitational wave detectors that utilize time-delay interferometry to suppress laser noise. The constraint on modified black holes, <span>\\\\(\\\\varDelta \\\\alpha \\\\preceq 10^{-5}\\\\)</span>, is almost the same with and without the time-delay interferometry combination. This analysis enhances our understanding and underscores the crucial role of observations in advancing gravitational phenomena within String Theory.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14100-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14100-5\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14100-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
The constraint on modified black holes with extreme mass ratio inspirals
The low-energy effective action of String Theory introduces corrections to the dilaton-graviton sector, resulting in deformed black holes beyond general relativity. We analyze extreme mass-ratio inspiral systems (EMRIs), where a stellar-mass object spirals into a slowly rotating supermassive black hole including a distinct deviation parameter. This study examines the effects of this deformation on the rate of change of orbital energy and angular momentum, orbital evolution, and phase dynamics, incorporating leading-order post-Newtonian corrections. The String theory parameter \(\alpha \) will accelerate the EMRI merger because of the extra energy and angular momentum fluxes carried away by corrections to the dilaton-graviton sector. With 1-year observations of EMRIs, we employ the Fisher information matrix method to evaluate the potential for detecting deviations from general relativity through space-based gravitational wave detectors that utilize time-delay interferometry to suppress laser noise. The constraint on modified black holes, \(\varDelta \alpha \preceq 10^{-5}\), is almost the same with and without the time-delay interferometry combination. This analysis enhances our understanding and underscores the crucial role of observations in advancing gravitational phenomena within String Theory.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.