废水的生物修复:一种创新的新方法

IF 3 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Somani Chandrika Rath, Upasana Bhagawati, Arti Goel
{"title":"废水的生物修复:一种创新的新方法","authors":"Somani Chandrika Rath,&nbsp;Upasana Bhagawati,&nbsp;Arti Goel","doi":"10.1007/s10661-025-13943-5","DOIUrl":null,"url":null,"abstract":"<div><p>Water contamination from rapid urbanization, industrialization, and agricultural activities has emerged as a critical environmental challenge, leading to widespread waterborne diseases and millions of annual fatalities. Conventional water treatment methods such as coagulation, flocculation, and sedimentation exist; they are often hindered by high chemical and energy costs. The limitations of traditional water treatment approaches have necessitated the exploration of alternative technologies that can provide more efficient and cost-effective solutions for water purification. Nanotechnology-based water treatment methods, leveraging the unique physicochemical properties of nanoparticles, can potentially overcome the limitations of conventional water treatment techniques and provide enhanced pollutant removal efficiency. This review critically evaluates the latest advances in magnetic nanoadsorbent technologies for wastewater remediation, distinguishing itself from existing literature by integrating theoretical principles with practical application. The analysis reveals that nanoparticle-based treatment methods demonstrate superior wastewater remediation performance compared to conventional techniques. The unique properties of nanoparticles enable efficient removal of various contaminants, including heavy metals, organic compounds, and bacterial populations. These findings suggest that nanotechnology-based approaches represent a viable and sustainable solution for addressing current water treatment challenges, offering a promising direction for future water purification technologies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bionanoremediation of wastewater: an innovative and novel approach\",\"authors\":\"Somani Chandrika Rath,&nbsp;Upasana Bhagawati,&nbsp;Arti Goel\",\"doi\":\"10.1007/s10661-025-13943-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water contamination from rapid urbanization, industrialization, and agricultural activities has emerged as a critical environmental challenge, leading to widespread waterborne diseases and millions of annual fatalities. Conventional water treatment methods such as coagulation, flocculation, and sedimentation exist; they are often hindered by high chemical and energy costs. The limitations of traditional water treatment approaches have necessitated the exploration of alternative technologies that can provide more efficient and cost-effective solutions for water purification. Nanotechnology-based water treatment methods, leveraging the unique physicochemical properties of nanoparticles, can potentially overcome the limitations of conventional water treatment techniques and provide enhanced pollutant removal efficiency. This review critically evaluates the latest advances in magnetic nanoadsorbent technologies for wastewater remediation, distinguishing itself from existing literature by integrating theoretical principles with practical application. The analysis reveals that nanoparticle-based treatment methods demonstrate superior wastewater remediation performance compared to conventional techniques. The unique properties of nanoparticles enable efficient removal of various contaminants, including heavy metals, organic compounds, and bacterial populations. These findings suggest that nanotechnology-based approaches represent a viable and sustainable solution for addressing current water treatment challenges, offering a promising direction for future water purification technologies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-025-13943-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13943-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

快速城市化、工业化和农业活动造成的水污染已成为一项严峻的环境挑战,导致广泛的水传播疾病和每年数百万人的死亡。目前已有混凝、絮凝和沉淀等传统水处理方法,但这些方法往往受到高昂的化学和能源成本的阻碍。由于传统水处理方法的局限性,人们有必要探索能提供更高效、更具成本效益的水净化解决方案的替代技术。基于纳米技术的水处理方法利用纳米颗粒独特的物理化学特性,有可能克服传统水处理技术的局限性,提高污染物去除效率。本综述批判性地评估了用于废水修复的磁性纳米吸附剂技术的最新进展,通过将理论原理与实际应用相结合,使其有别于现有文献。分析表明,与传统技术相比,基于纳米颗粒的处理方法具有更优越的废水修复性能。纳米粒子的独特性能能够有效去除各种污染物,包括重金属、有机化合物和细菌种群。这些研究结果表明,基于纳米技术的方法是应对当前水处理挑战的可行且可持续的解决方案,为未来的水净化技术提供了一个充满希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bionanoremediation of wastewater: an innovative and novel approach

Water contamination from rapid urbanization, industrialization, and agricultural activities has emerged as a critical environmental challenge, leading to widespread waterborne diseases and millions of annual fatalities. Conventional water treatment methods such as coagulation, flocculation, and sedimentation exist; they are often hindered by high chemical and energy costs. The limitations of traditional water treatment approaches have necessitated the exploration of alternative technologies that can provide more efficient and cost-effective solutions for water purification. Nanotechnology-based water treatment methods, leveraging the unique physicochemical properties of nanoparticles, can potentially overcome the limitations of conventional water treatment techniques and provide enhanced pollutant removal efficiency. This review critically evaluates the latest advances in magnetic nanoadsorbent technologies for wastewater remediation, distinguishing itself from existing literature by integrating theoretical principles with practical application. The analysis reveals that nanoparticle-based treatment methods demonstrate superior wastewater remediation performance compared to conventional techniques. The unique properties of nanoparticles enable efficient removal of various contaminants, including heavy metals, organic compounds, and bacterial populations. These findings suggest that nanotechnology-based approaches represent a viable and sustainable solution for addressing current water treatment challenges, offering a promising direction for future water purification technologies.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信