Somani Chandrika Rath, Upasana Bhagawati, Arti Goel
{"title":"废水的生物修复:一种创新的新方法","authors":"Somani Chandrika Rath, Upasana Bhagawati, Arti Goel","doi":"10.1007/s10661-025-13943-5","DOIUrl":null,"url":null,"abstract":"<div><p>Water contamination from rapid urbanization, industrialization, and agricultural activities has emerged as a critical environmental challenge, leading to widespread waterborne diseases and millions of annual fatalities. Conventional water treatment methods such as coagulation, flocculation, and sedimentation exist; they are often hindered by high chemical and energy costs. The limitations of traditional water treatment approaches have necessitated the exploration of alternative technologies that can provide more efficient and cost-effective solutions for water purification. Nanotechnology-based water treatment methods, leveraging the unique physicochemical properties of nanoparticles, can potentially overcome the limitations of conventional water treatment techniques and provide enhanced pollutant removal efficiency. This review critically evaluates the latest advances in magnetic nanoadsorbent technologies for wastewater remediation, distinguishing itself from existing literature by integrating theoretical principles with practical application. The analysis reveals that nanoparticle-based treatment methods demonstrate superior wastewater remediation performance compared to conventional techniques. The unique properties of nanoparticles enable efficient removal of various contaminants, including heavy metals, organic compounds, and bacterial populations. These findings suggest that nanotechnology-based approaches represent a viable and sustainable solution for addressing current water treatment challenges, offering a promising direction for future water purification technologies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bionanoremediation of wastewater: an innovative and novel approach\",\"authors\":\"Somani Chandrika Rath, Upasana Bhagawati, Arti Goel\",\"doi\":\"10.1007/s10661-025-13943-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water contamination from rapid urbanization, industrialization, and agricultural activities has emerged as a critical environmental challenge, leading to widespread waterborne diseases and millions of annual fatalities. Conventional water treatment methods such as coagulation, flocculation, and sedimentation exist; they are often hindered by high chemical and energy costs. The limitations of traditional water treatment approaches have necessitated the exploration of alternative technologies that can provide more efficient and cost-effective solutions for water purification. Nanotechnology-based water treatment methods, leveraging the unique physicochemical properties of nanoparticles, can potentially overcome the limitations of conventional water treatment techniques and provide enhanced pollutant removal efficiency. This review critically evaluates the latest advances in magnetic nanoadsorbent technologies for wastewater remediation, distinguishing itself from existing literature by integrating theoretical principles with practical application. The analysis reveals that nanoparticle-based treatment methods demonstrate superior wastewater remediation performance compared to conventional techniques. The unique properties of nanoparticles enable efficient removal of various contaminants, including heavy metals, organic compounds, and bacterial populations. These findings suggest that nanotechnology-based approaches represent a viable and sustainable solution for addressing current water treatment challenges, offering a promising direction for future water purification technologies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-025-13943-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13943-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Bionanoremediation of wastewater: an innovative and novel approach
Water contamination from rapid urbanization, industrialization, and agricultural activities has emerged as a critical environmental challenge, leading to widespread waterborne diseases and millions of annual fatalities. Conventional water treatment methods such as coagulation, flocculation, and sedimentation exist; they are often hindered by high chemical and energy costs. The limitations of traditional water treatment approaches have necessitated the exploration of alternative technologies that can provide more efficient and cost-effective solutions for water purification. Nanotechnology-based water treatment methods, leveraging the unique physicochemical properties of nanoparticles, can potentially overcome the limitations of conventional water treatment techniques and provide enhanced pollutant removal efficiency. This review critically evaluates the latest advances in magnetic nanoadsorbent technologies for wastewater remediation, distinguishing itself from existing literature by integrating theoretical principles with practical application. The analysis reveals that nanoparticle-based treatment methods demonstrate superior wastewater remediation performance compared to conventional techniques. The unique properties of nanoparticles enable efficient removal of various contaminants, including heavy metals, organic compounds, and bacterial populations. These findings suggest that nanotechnology-based approaches represent a viable and sustainable solution for addressing current water treatment challenges, offering a promising direction for future water purification technologies.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.