Ahmed Abughali;Abdullahi Oboh Muhammed;Ameena Saad Al-Sumaiti;Mohamed Shawky El Moursi
{"title":"考虑非线性的自动生成控制中检测和减轻假数据注入攻击的新型数据驱动模型","authors":"Ahmed Abughali;Abdullahi Oboh Muhammed;Ameena Saad Al-Sumaiti;Mohamed Shawky El Moursi","doi":"10.1109/TIA.2025.3529819","DOIUrl":null,"url":null,"abstract":"Increasing cyber vulnerabilities pose various concerns regarding the stability and reliability of power systems. Conventionally, Automatic Generation Control (AGC) is employed to maintain the frequency of power systems within a predefined range. However, it is susceptible to cyber-attacks due to its reliance on data transmitted through communication links. Consequently, designing robust protection mechanism to detect, locate and mitigate such attacks is crucial. This paper proposes three data-driven architectures to detect, locate and mitigate False Data Injection (FDI) and Denial of Service (DoS) attacks against AGC systems. First, the proposed models are trained and evaluated using diverse Pulse and Ramp stealthy attacks scenarios in a two-area AGC system, considering the AGC nonlinearities. The detection model exhibits exemplar capability for detecting and locating individual and particularly, multiple coordinated stealthy cyber-attacks, that can significantly undermine the effectiveness of detection systems, with <inline-formula><tex-math>$F_{1}$</tex-math></inline-formula>-score of 93.46% and 96.32% AUC score. The second and third models, attacked class-based mitigation model (ACM) and comprehensive mitigation model (CMM), are employed to accurately recover the corrupted measurements, attaining RMSEs of 0.003463 and 0.003218, respectively. Furthermore, this paper is the first to innovatively examine the impact of PV power system injections on the effectiveness of the proposed detection model, which accurately classified 75,100 out of 75,131 no-attack instances, showcasing its proficiency in distinguishing PV injections from cyber-attacks. Finally, the proposed models are further evaluated using three-area AGC system under mixed FDI and DoS attack scenarios. The obtained results demonstrate their capability to handle larger systems while meeting practical operational requirements.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 2","pages":"2731-2745"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Data-Driven Models for Detecting and Mitigating False Data Injection Attacks in Automatic Generation Control Considering Nonlinearities\",\"authors\":\"Ahmed Abughali;Abdullahi Oboh Muhammed;Ameena Saad Al-Sumaiti;Mohamed Shawky El Moursi\",\"doi\":\"10.1109/TIA.2025.3529819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing cyber vulnerabilities pose various concerns regarding the stability and reliability of power systems. Conventionally, Automatic Generation Control (AGC) is employed to maintain the frequency of power systems within a predefined range. However, it is susceptible to cyber-attacks due to its reliance on data transmitted through communication links. Consequently, designing robust protection mechanism to detect, locate and mitigate such attacks is crucial. This paper proposes three data-driven architectures to detect, locate and mitigate False Data Injection (FDI) and Denial of Service (DoS) attacks against AGC systems. First, the proposed models are trained and evaluated using diverse Pulse and Ramp stealthy attacks scenarios in a two-area AGC system, considering the AGC nonlinearities. The detection model exhibits exemplar capability for detecting and locating individual and particularly, multiple coordinated stealthy cyber-attacks, that can significantly undermine the effectiveness of detection systems, with <inline-formula><tex-math>$F_{1}$</tex-math></inline-formula>-score of 93.46% and 96.32% AUC score. The second and third models, attacked class-based mitigation model (ACM) and comprehensive mitigation model (CMM), are employed to accurately recover the corrupted measurements, attaining RMSEs of 0.003463 and 0.003218, respectively. Furthermore, this paper is the first to innovatively examine the impact of PV power system injections on the effectiveness of the proposed detection model, which accurately classified 75,100 out of 75,131 no-attack instances, showcasing its proficiency in distinguishing PV injections from cyber-attacks. Finally, the proposed models are further evaluated using three-area AGC system under mixed FDI and DoS attack scenarios. The obtained results demonstrate their capability to handle larger systems while meeting practical operational requirements.\",\"PeriodicalId\":13337,\"journal\":{\"name\":\"IEEE Transactions on Industry Applications\",\"volume\":\"61 2\",\"pages\":\"2731-2745\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industry Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839630/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839630/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Novel Data-Driven Models for Detecting and Mitigating False Data Injection Attacks in Automatic Generation Control Considering Nonlinearities
Increasing cyber vulnerabilities pose various concerns regarding the stability and reliability of power systems. Conventionally, Automatic Generation Control (AGC) is employed to maintain the frequency of power systems within a predefined range. However, it is susceptible to cyber-attacks due to its reliance on data transmitted through communication links. Consequently, designing robust protection mechanism to detect, locate and mitigate such attacks is crucial. This paper proposes three data-driven architectures to detect, locate and mitigate False Data Injection (FDI) and Denial of Service (DoS) attacks against AGC systems. First, the proposed models are trained and evaluated using diverse Pulse and Ramp stealthy attacks scenarios in a two-area AGC system, considering the AGC nonlinearities. The detection model exhibits exemplar capability for detecting and locating individual and particularly, multiple coordinated stealthy cyber-attacks, that can significantly undermine the effectiveness of detection systems, with $F_{1}$-score of 93.46% and 96.32% AUC score. The second and third models, attacked class-based mitigation model (ACM) and comprehensive mitigation model (CMM), are employed to accurately recover the corrupted measurements, attaining RMSEs of 0.003463 and 0.003218, respectively. Furthermore, this paper is the first to innovatively examine the impact of PV power system injections on the effectiveness of the proposed detection model, which accurately classified 75,100 out of 75,131 no-attack instances, showcasing its proficiency in distinguishing PV injections from cyber-attacks. Finally, the proposed models are further evaluated using three-area AGC system under mixed FDI and DoS attack scenarios. The obtained results demonstrate their capability to handle larger systems while meeting practical operational requirements.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.