{"title":"氦离子植入对氘等离子体诱导的钨微观结构演变和氘保留的影响","authors":"Honghui Zhang , Tongjun Xia , Yongzhi Shi , Zhengyu Jiang , Xingyu Ren , Lisha Liang , Kaigui Zhu","doi":"10.1016/j.jnucmat.2025.155794","DOIUrl":null,"url":null,"abstract":"<div><div>Surface blistering and internal microstructure evolutions as well as deuterium retention in tungsten with helium ion implanted followed by deuterium plasma exposure were investigated. The helium ion implantation was taken with 40 keV with a flux of 1.6 × 10<sup>17</sup> He<sup>+</sup>/(m<sup>2</sup>s) to a fluence of 6.0 × 10<sup>20</sup> He<sup>+</sup>/m<sup>2</sup> at room temperature. The following deuterium plasma exposure was taken with a flux of 5.96 × 10<sup>19</sup> D/(m<sup>2</sup>s) at a bias of 100 eV at 340 K. The deuterium plasma exposure was designed with two different durations. One is about 19 h (h) which corresponds a fluence of 4.07 × 10<sup>24</sup> D/m<sup>2</sup>, while another is nearly 96 h corresponds a fluence of 2.06 × 10<sup>25</sup> D/m<sup>2</sup>. The helium ion implantation itself did not induce surface blister nor detectable internal helium bubble. After subsequent deuterium exposure of 19 h, dense surface blisters appeared on the reference tungsten, while no blister was formed on the helium implanted tungsten, indicating the helium ion implantation can efficiently suppress the surface blistering. However, when the deuterium irradiation time was increased up to 96 h, sparse deuterium blisters appeared on the surface of the helium ion pre-implanted W, indicating D could pass through the helium implantation layer as the exposure time was long enough. TEM results revealed that no bubble can be observed in the reference tungsten only exposed to deuterium plasma, while bubbles can be confirmed in the helium ion pre-implanted tungsten after deuterium irradiation, suggesting that the growth of helium bubbles can be enhanced by the subsequent deuterium plasma exposure. For the deuterium plasma exposure with 19 h, the total deuterium retention in the helium ion pre-implanted tungsten was three times that of the reference tungsten, indicating the helium ion implantation could increase the deuterium retention in tungsten.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"610 ","pages":"Article 155794"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of helium ion implantation on deuterium plasma induced microstructure evolution and deuterium retention in tungsten\",\"authors\":\"Honghui Zhang , Tongjun Xia , Yongzhi Shi , Zhengyu Jiang , Xingyu Ren , Lisha Liang , Kaigui Zhu\",\"doi\":\"10.1016/j.jnucmat.2025.155794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surface blistering and internal microstructure evolutions as well as deuterium retention in tungsten with helium ion implanted followed by deuterium plasma exposure were investigated. The helium ion implantation was taken with 40 keV with a flux of 1.6 × 10<sup>17</sup> He<sup>+</sup>/(m<sup>2</sup>s) to a fluence of 6.0 × 10<sup>20</sup> He<sup>+</sup>/m<sup>2</sup> at room temperature. The following deuterium plasma exposure was taken with a flux of 5.96 × 10<sup>19</sup> D/(m<sup>2</sup>s) at a bias of 100 eV at 340 K. The deuterium plasma exposure was designed with two different durations. One is about 19 h (h) which corresponds a fluence of 4.07 × 10<sup>24</sup> D/m<sup>2</sup>, while another is nearly 96 h corresponds a fluence of 2.06 × 10<sup>25</sup> D/m<sup>2</sup>. The helium ion implantation itself did not induce surface blister nor detectable internal helium bubble. After subsequent deuterium exposure of 19 h, dense surface blisters appeared on the reference tungsten, while no blister was formed on the helium implanted tungsten, indicating the helium ion implantation can efficiently suppress the surface blistering. However, when the deuterium irradiation time was increased up to 96 h, sparse deuterium blisters appeared on the surface of the helium ion pre-implanted W, indicating D could pass through the helium implantation layer as the exposure time was long enough. TEM results revealed that no bubble can be observed in the reference tungsten only exposed to deuterium plasma, while bubbles can be confirmed in the helium ion pre-implanted tungsten after deuterium irradiation, suggesting that the growth of helium bubbles can be enhanced by the subsequent deuterium plasma exposure. For the deuterium plasma exposure with 19 h, the total deuterium retention in the helium ion pre-implanted tungsten was three times that of the reference tungsten, indicating the helium ion implantation could increase the deuterium retention in tungsten.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"610 \",\"pages\":\"Article 155794\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311525001898\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311525001898","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of helium ion implantation on deuterium plasma induced microstructure evolution and deuterium retention in tungsten
Surface blistering and internal microstructure evolutions as well as deuterium retention in tungsten with helium ion implanted followed by deuterium plasma exposure were investigated. The helium ion implantation was taken with 40 keV with a flux of 1.6 × 1017 He+/(m2s) to a fluence of 6.0 × 1020 He+/m2 at room temperature. The following deuterium plasma exposure was taken with a flux of 5.96 × 1019 D/(m2s) at a bias of 100 eV at 340 K. The deuterium plasma exposure was designed with two different durations. One is about 19 h (h) which corresponds a fluence of 4.07 × 1024 D/m2, while another is nearly 96 h corresponds a fluence of 2.06 × 1025 D/m2. The helium ion implantation itself did not induce surface blister nor detectable internal helium bubble. After subsequent deuterium exposure of 19 h, dense surface blisters appeared on the reference tungsten, while no blister was formed on the helium implanted tungsten, indicating the helium ion implantation can efficiently suppress the surface blistering. However, when the deuterium irradiation time was increased up to 96 h, sparse deuterium blisters appeared on the surface of the helium ion pre-implanted W, indicating D could pass through the helium implantation layer as the exposure time was long enough. TEM results revealed that no bubble can be observed in the reference tungsten only exposed to deuterium plasma, while bubbles can be confirmed in the helium ion pre-implanted tungsten after deuterium irradiation, suggesting that the growth of helium bubbles can be enhanced by the subsequent deuterium plasma exposure. For the deuterium plasma exposure with 19 h, the total deuterium retention in the helium ion pre-implanted tungsten was three times that of the reference tungsten, indicating the helium ion implantation could increase the deuterium retention in tungsten.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.