利用海量生存数据进行 Cox 回归的最佳装饰相关得分子采样

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yujing Shao , Zhaohan Hou , Lei Wang , Heng Lian
{"title":"利用海量生存数据进行 Cox 回归的最佳装饰相关得分子采样","authors":"Yujing Shao ,&nbsp;Zhaohan Hou ,&nbsp;Lei Wang ,&nbsp;Heng Lian","doi":"10.1016/j.neucom.2025.130090","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates optimal subsampling strategies for the preconceived low-dimensional parameters of main interest in the presence of the nuisance parameters for Cox regression with massive survival data. A general subsampling decorrelated score function based on the log-partial likelihood is constructed to reduce the influence of the less accurate nuisance parameter estimation with a possibly slow convergence rate. The consistency and asymptotic normality of the resultant subsample estimators are established. We derive unified optimal subsampling probabilities based on A- and L-optimality criteria. A two-step algorithm is further proposed to implement practically, and the asymptotic properties of the resultant estimators are also given. The satisfactory performance of our proposed subsample estimators is demonstrated by simulation results and an airline dataset.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130090"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal decorrelated score subsampling for Cox regression with massive survival data\",\"authors\":\"Yujing Shao ,&nbsp;Zhaohan Hou ,&nbsp;Lei Wang ,&nbsp;Heng Lian\",\"doi\":\"10.1016/j.neucom.2025.130090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates optimal subsampling strategies for the preconceived low-dimensional parameters of main interest in the presence of the nuisance parameters for Cox regression with massive survival data. A general subsampling decorrelated score function based on the log-partial likelihood is constructed to reduce the influence of the less accurate nuisance parameter estimation with a possibly slow convergence rate. The consistency and asymptotic normality of the resultant subsample estimators are established. We derive unified optimal subsampling probabilities based on A- and L-optimality criteria. A two-step algorithm is further proposed to implement practically, and the asymptotic properties of the resultant estimators are also given. The satisfactory performance of our proposed subsample estimators is demonstrated by simulation results and an airline dataset.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"638 \",\"pages\":\"Article 130090\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225007623\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225007623","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal decorrelated score subsampling for Cox regression with massive survival data
This paper investigates optimal subsampling strategies for the preconceived low-dimensional parameters of main interest in the presence of the nuisance parameters for Cox regression with massive survival data. A general subsampling decorrelated score function based on the log-partial likelihood is constructed to reduce the influence of the less accurate nuisance parameter estimation with a possibly slow convergence rate. The consistency and asymptotic normality of the resultant subsample estimators are established. We derive unified optimal subsampling probabilities based on A- and L-optimality criteria. A two-step algorithm is further proposed to implement practically, and the asymptotic properties of the resultant estimators are also given. The satisfactory performance of our proposed subsample estimators is demonstrated by simulation results and an airline dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信