随机相关框架下基于格的寿险定价方法

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Massimo Costabile , Ivar Massabó , Emilio Russo , Alessandro Staino , Rogemar Mamon , Yixing Zhao
{"title":"随机相关框架下基于格的寿险定价方法","authors":"Massimo Costabile ,&nbsp;Ivar Massabó ,&nbsp;Emilio Russo ,&nbsp;Alessandro Staino ,&nbsp;Rogemar Mamon ,&nbsp;Yixing Zhao","doi":"10.1016/j.matcom.2025.03.027","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a new implementation approach in insurance product valuation to capture the stochastic correlation between financial and demographic factors. This is important to accommodate the prevailing situation where the interest rate and mortality intensity move jointly and randomly. A stochastic correlation model is considered where it follows a diffusion process that may assume the form of a bounded Jacobi process or of a transformed modified Ornstein–Uhlenbeck process. Our contributions strengthen the general modelling set up of dependent financial and actuarial risks. We put forward a discrete-time pricing model that supports the valuation of a relatively wide class of insurance products. Specifically, the pricing of contracts, with an embedded surrender option for which no explicit formulae are available, is facilitated with ease. We customise the construction of lattice discretisations that admit a large set of risk processes having appropriate specifications. In particular, the interest rate, mortality and correlation dynamics are discretised via three different binomial lattices that are then assembled to create a trivariate lattice structured with eight branches for each node. Numerical experiments involving some stylised insurance contracts are conducted. Such experiments confirm the accuracy and efficiency of our proposed approach with respect to two benchmarks: the Monte-Carlo simulation method, and the method and results by Devolder et al. (2024).</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"235 ","pages":"Pages 145-159"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lattice-based approach for life insurance pricing in a stochastic correlation framework\",\"authors\":\"Massimo Costabile ,&nbsp;Ivar Massabó ,&nbsp;Emilio Russo ,&nbsp;Alessandro Staino ,&nbsp;Rogemar Mamon ,&nbsp;Yixing Zhao\",\"doi\":\"10.1016/j.matcom.2025.03.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a new implementation approach in insurance product valuation to capture the stochastic correlation between financial and demographic factors. This is important to accommodate the prevailing situation where the interest rate and mortality intensity move jointly and randomly. A stochastic correlation model is considered where it follows a diffusion process that may assume the form of a bounded Jacobi process or of a transformed modified Ornstein–Uhlenbeck process. Our contributions strengthen the general modelling set up of dependent financial and actuarial risks. We put forward a discrete-time pricing model that supports the valuation of a relatively wide class of insurance products. Specifically, the pricing of contracts, with an embedded surrender option for which no explicit formulae are available, is facilitated with ease. We customise the construction of lattice discretisations that admit a large set of risk processes having appropriate specifications. In particular, the interest rate, mortality and correlation dynamics are discretised via three different binomial lattices that are then assembled to create a trivariate lattice structured with eight branches for each node. Numerical experiments involving some stylised insurance contracts are conducted. Such experiments confirm the accuracy and efficiency of our proposed approach with respect to two benchmarks: the Monte-Carlo simulation method, and the method and results by Devolder et al. (2024).</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"235 \",\"pages\":\"Pages 145-159\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425001120\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425001120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的实施方法,在保险产品估值捕捉金融和人口因素之间的随机相关性。这对于适应利率和死亡率强度共同和随机变化的普遍情况非常重要。考虑一个随机相关模型,其中它遵循一个扩散过程,该扩散过程可以采用有界Jacobi过程的形式或转换的修正Ornstein-Uhlenbeck过程。我们的贡献加强了依赖金融和精算风险的一般建模设置。我们提出了一个离散时间定价模型,该模型支持相对广泛的保险产品类别的估值。具体来说,对于没有明确公式可用的嵌入退让选项的合约,很容易进行定价。我们定制晶格离散的构造,承认具有适当规格的大量风险过程。特别是,利率、死亡率和相关动力学通过三个不同的二项格离散,然后组装成一个三变量格,每个节点有八个分支。对一些风格化保险合同进行了数值实验。这些实验证实了我们提出的方法在两个基准方面的准确性和效率:蒙特卡罗模拟方法和Devolder等人(2024)的方法和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lattice-based approach for life insurance pricing in a stochastic correlation framework
We propose a new implementation approach in insurance product valuation to capture the stochastic correlation between financial and demographic factors. This is important to accommodate the prevailing situation where the interest rate and mortality intensity move jointly and randomly. A stochastic correlation model is considered where it follows a diffusion process that may assume the form of a bounded Jacobi process or of a transformed modified Ornstein–Uhlenbeck process. Our contributions strengthen the general modelling set up of dependent financial and actuarial risks. We put forward a discrete-time pricing model that supports the valuation of a relatively wide class of insurance products. Specifically, the pricing of contracts, with an embedded surrender option for which no explicit formulae are available, is facilitated with ease. We customise the construction of lattice discretisations that admit a large set of risk processes having appropriate specifications. In particular, the interest rate, mortality and correlation dynamics are discretised via three different binomial lattices that are then assembled to create a trivariate lattice structured with eight branches for each node. Numerical experiments involving some stylised insurance contracts are conducted. Such experiments confirm the accuracy and efficiency of our proposed approach with respect to two benchmarks: the Monte-Carlo simulation method, and the method and results by Devolder et al. (2024).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信