用于卵巢癌细胞减灭术规划的增强现实头戴设备上的三维容积渲染:纪念斯隆-凯特琳癌症中心卵巢团队研究

IF 4.5 2区 医学 Q1 OBSTETRICS & GYNECOLOGY
Ryan M. Kahn , Kimberly Murphy , Tulsi Patel , Effi Yeoshoua , Emily Tian , Lindsey Finch , Qin Zhou , Alexia Iasonos , Paul Booth , Joshua N. Honeyman , Javin Schefflein , Michael Crouch , Sameer Kaza , Vance Broach , Ginger J. Gardner , Kara Long Roche , Yukio Sonoda , Nadeem R. Abu-Rustum , Dennis S. Chi
{"title":"用于卵巢癌细胞减灭术规划的增强现实头戴设备上的三维容积渲染:纪念斯隆-凯特琳癌症中心卵巢团队研究","authors":"Ryan M. Kahn ,&nbsp;Kimberly Murphy ,&nbsp;Tulsi Patel ,&nbsp;Effi Yeoshoua ,&nbsp;Emily Tian ,&nbsp;Lindsey Finch ,&nbsp;Qin Zhou ,&nbsp;Alexia Iasonos ,&nbsp;Paul Booth ,&nbsp;Joshua N. Honeyman ,&nbsp;Javin Schefflein ,&nbsp;Michael Crouch ,&nbsp;Sameer Kaza ,&nbsp;Vance Broach ,&nbsp;Ginger J. Gardner ,&nbsp;Kara Long Roche ,&nbsp;Yukio Sonoda ,&nbsp;Nadeem R. Abu-Rustum ,&nbsp;Dennis S. Chi","doi":"10.1016/j.ygyno.2025.03.040","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>New three-dimensional (3D) augmented reality technology represents an opportunity to improve presurgical planning. This study aimed to measure the accuracy of 3D volumetric rendering on augmented reality headsets to predict extent of disease prior to ovarian cancer cytoreductive surgery.</div></div><div><h3>Methods</h3><div>This single-institution prospective study took place from 03/01/2024 to 10/01/2024. Utilizing Medivis 3D augmented reality headsets, investigators reviewed volumetric renderings for patients with suspected advanced ovarian cancer prior to scheduled surgery and filled out a survey predicting presence of disease based on anatomic site. Pathology records were later reviewed to confirm the presence of disease. Statistical analyses included Cohen's kappa coefficient, sensitivity/specificity, and positive/negative predictive value measurements.</div></div><div><h3>Results</h3><div>We included 15 patients: 9 (60 %) with interval cytoreduction and 6 (40 %) with primary cytoreduction. For procedure, 14 (93 %) had complete gross resection and 1 (7 %) suboptimal cytoreduction (&gt;1 cm of residual disease). Using pathology results as the gold standard for each anatomic site, the 3D headset demonstrated accuracy of 100 % for omentum and pelvic lymph nodes; 93 % for para-aortic lymph nodes, right diaphragm, rectum, and liver; 87 % for small mesentery; and 80 % for small bowel serosa, spleen, and left diaphragm (<em>P</em> &gt; 0.05 for all).</div></div><div><h3>Conclusion</h3><div>The use of preoperative 3D volumetric rendering on augmented reality headsets to predict the extent of ovarian cancer spread showed high agreement with pathology across all anatomic sites studied. Additional research is needed to assess the potential role of this technology in improving surgical planning and patient outcomes.</div></div>","PeriodicalId":12853,"journal":{"name":"Gynecologic oncology","volume":"196 ","pages":"Pages 107-112"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional volumetric rendering on augmented reality headsets for ovarian cancer cytoreduction planning: A Memorial Sloan Kettering Cancer Center Team Ovary study\",\"authors\":\"Ryan M. Kahn ,&nbsp;Kimberly Murphy ,&nbsp;Tulsi Patel ,&nbsp;Effi Yeoshoua ,&nbsp;Emily Tian ,&nbsp;Lindsey Finch ,&nbsp;Qin Zhou ,&nbsp;Alexia Iasonos ,&nbsp;Paul Booth ,&nbsp;Joshua N. Honeyman ,&nbsp;Javin Schefflein ,&nbsp;Michael Crouch ,&nbsp;Sameer Kaza ,&nbsp;Vance Broach ,&nbsp;Ginger J. Gardner ,&nbsp;Kara Long Roche ,&nbsp;Yukio Sonoda ,&nbsp;Nadeem R. Abu-Rustum ,&nbsp;Dennis S. Chi\",\"doi\":\"10.1016/j.ygyno.2025.03.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>New three-dimensional (3D) augmented reality technology represents an opportunity to improve presurgical planning. This study aimed to measure the accuracy of 3D volumetric rendering on augmented reality headsets to predict extent of disease prior to ovarian cancer cytoreductive surgery.</div></div><div><h3>Methods</h3><div>This single-institution prospective study took place from 03/01/2024 to 10/01/2024. Utilizing Medivis 3D augmented reality headsets, investigators reviewed volumetric renderings for patients with suspected advanced ovarian cancer prior to scheduled surgery and filled out a survey predicting presence of disease based on anatomic site. Pathology records were later reviewed to confirm the presence of disease. Statistical analyses included Cohen's kappa coefficient, sensitivity/specificity, and positive/negative predictive value measurements.</div></div><div><h3>Results</h3><div>We included 15 patients: 9 (60 %) with interval cytoreduction and 6 (40 %) with primary cytoreduction. For procedure, 14 (93 %) had complete gross resection and 1 (7 %) suboptimal cytoreduction (&gt;1 cm of residual disease). Using pathology results as the gold standard for each anatomic site, the 3D headset demonstrated accuracy of 100 % for omentum and pelvic lymph nodes; 93 % for para-aortic lymph nodes, right diaphragm, rectum, and liver; 87 % for small mesentery; and 80 % for small bowel serosa, spleen, and left diaphragm (<em>P</em> &gt; 0.05 for all).</div></div><div><h3>Conclusion</h3><div>The use of preoperative 3D volumetric rendering on augmented reality headsets to predict the extent of ovarian cancer spread showed high agreement with pathology across all anatomic sites studied. Additional research is needed to assess the potential role of this technology in improving surgical planning and patient outcomes.</div></div>\",\"PeriodicalId\":12853,\"journal\":{\"name\":\"Gynecologic oncology\",\"volume\":\"196 \",\"pages\":\"Pages 107-112\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gynecologic oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0090825825001179\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gynecologic oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0090825825001179","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的新的三维(3D)增强现实技术为改进术前计划提供了机会。本研究旨在测量增强现实头戴式耳机上3D体积渲染的准确性,以预测卵巢癌细胞减少手术前的疾病程度。方法该单机构前瞻性研究于2024年1月3日至2024年1月10日进行。利用Medivis 3D增强现实耳机,研究人员回顾了疑似晚期卵巢癌患者在预定手术前的体积渲染图,并填写了一份基于解剖部位预测疾病存在的调查。病理记录后来被检查以确认疾病的存在。统计分析包括科恩kappa系数、敏感性/特异性和阳性/阴性预测值测量。结果15例患者中,间隔性细胞减少9例(60%),原发性细胞减少6例(40%)。手术方面,14例(93%)患者进行了完全的大体切除,1例(7%)患者进行了次理想的细胞减少(残留病变1厘米)。使用病理结果作为每个解剖部位的金标准,3D耳机显示网膜和盆腔淋巴结的准确性为100%;93%为主动脉旁淋巴结、右膈、直肠和肝脏;小肠系膜87%;小肠浆膜、脾脏和左膈80% (P >;0.05)。结论术前使用增强现实头盔三维立体渲染预测卵巢癌的扩散程度与所有解剖部位的病理高度一致。需要进一步的研究来评估该技术在改善手术计划和患者预后方面的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional volumetric rendering on augmented reality headsets for ovarian cancer cytoreduction planning: A Memorial Sloan Kettering Cancer Center Team Ovary study

Objective

New three-dimensional (3D) augmented reality technology represents an opportunity to improve presurgical planning. This study aimed to measure the accuracy of 3D volumetric rendering on augmented reality headsets to predict extent of disease prior to ovarian cancer cytoreductive surgery.

Methods

This single-institution prospective study took place from 03/01/2024 to 10/01/2024. Utilizing Medivis 3D augmented reality headsets, investigators reviewed volumetric renderings for patients with suspected advanced ovarian cancer prior to scheduled surgery and filled out a survey predicting presence of disease based on anatomic site. Pathology records were later reviewed to confirm the presence of disease. Statistical analyses included Cohen's kappa coefficient, sensitivity/specificity, and positive/negative predictive value measurements.

Results

We included 15 patients: 9 (60 %) with interval cytoreduction and 6 (40 %) with primary cytoreduction. For procedure, 14 (93 %) had complete gross resection and 1 (7 %) suboptimal cytoreduction (>1 cm of residual disease). Using pathology results as the gold standard for each anatomic site, the 3D headset demonstrated accuracy of 100 % for omentum and pelvic lymph nodes; 93 % for para-aortic lymph nodes, right diaphragm, rectum, and liver; 87 % for small mesentery; and 80 % for small bowel serosa, spleen, and left diaphragm (P > 0.05 for all).

Conclusion

The use of preoperative 3D volumetric rendering on augmented reality headsets to predict the extent of ovarian cancer spread showed high agreement with pathology across all anatomic sites studied. Additional research is needed to assess the potential role of this technology in improving surgical planning and patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gynecologic oncology
Gynecologic oncology 医学-妇产科学
CiteScore
8.60
自引率
6.40%
发文量
1062
审稿时长
37 days
期刊介绍: Gynecologic Oncology, an international journal, is devoted to the publication of clinical and investigative articles that concern tumors of the female reproductive tract. Investigations relating to the etiology, diagnosis, and treatment of female cancers, as well as research from any of the disciplines related to this field of interest, are published. Research Areas Include: • Cell and molecular biology • Chemotherapy • Cytology • Endocrinology • Epidemiology • Genetics • Gynecologic surgery • Immunology • Pathology • Radiotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信