分数布朗运动驱动的条件McKean-Vlasov随机微分方程

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Guangjun Shen, Jiangpeng Wang
{"title":"分数布朗运动驱动的条件McKean-Vlasov随机微分方程","authors":"Guangjun Shen,&nbsp;Jiangpeng Wang","doi":"10.1016/j.chaos.2025.116348","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with a class of McKean–Vlasov stochastic differential equations with Markovian regime-switching driven by fractional Brownian motions with Hurst parameter <span><math><mrow><mi>H</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. We first obtain the existence and uniqueness theorem for solutions of the concerned equations under the non-Lipschitz conditions. Second, we establish the propagation of chaos for the associated mean-field interaction particle systems with common noise and provide an explicit bound on the convergence rate. At last, an averaging principle is investigated with respect to two time-scale conditional McKean–Vlasov stochastic differential equations.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116348"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional McKean–Vlasov stochastic differential equations driven by fractional Brownian motions\",\"authors\":\"Guangjun Shen,&nbsp;Jiangpeng Wang\",\"doi\":\"10.1016/j.chaos.2025.116348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we are concerned with a class of McKean–Vlasov stochastic differential equations with Markovian regime-switching driven by fractional Brownian motions with Hurst parameter <span><math><mrow><mi>H</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. We first obtain the existence and uniqueness theorem for solutions of the concerned equations under the non-Lipschitz conditions. Second, we establish the propagation of chaos for the associated mean-field interaction particle systems with common noise and provide an explicit bound on the convergence rate. At last, an averaging principle is investigated with respect to two time-scale conditional McKean–Vlasov stochastic differential equations.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"196 \",\"pages\":\"Article 116348\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925003613\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003613","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有马尔可夫状态切换的McKean-Vlasov随机微分方程,该方程由分数阶布朗运动驱动,其参数为Hurst参数H>;12。首先得到了非lipschitz条件下相关方程解的存在唯一性定理。其次,我们建立了具有共同噪声的相关平均场相互作用粒子系统的混沌传播,并给出了收敛速率的显式界。最后,研究了两个时标条件McKean-Vlasov随机微分方程的平均原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional McKean–Vlasov stochastic differential equations driven by fractional Brownian motions
In this paper, we are concerned with a class of McKean–Vlasov stochastic differential equations with Markovian regime-switching driven by fractional Brownian motions with Hurst parameter H>12. We first obtain the existence and uniqueness theorem for solutions of the concerned equations under the non-Lipschitz conditions. Second, we establish the propagation of chaos for the associated mean-field interaction particle systems with common noise and provide an explicit bound on the convergence rate. At last, an averaging principle is investigated with respect to two time-scale conditional McKean–Vlasov stochastic differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信