算法交易的深度学习:预测模型和优化策略的系统回顾

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-04-04 DOI:10.1016/j.array.2025.100390
MD Shahriar Mahmud Bhuiyan , MD AL Rafi , Gourab Nicholas Rodrigues , MD Nazmul Hossain Mir , Adit Ishraq , M.F. Mridha , Jungpil Shin
{"title":"算法交易的深度学习:预测模型和优化策略的系统回顾","authors":"MD Shahriar Mahmud Bhuiyan ,&nbsp;MD AL Rafi ,&nbsp;Gourab Nicholas Rodrigues ,&nbsp;MD Nazmul Hossain Mir ,&nbsp;Adit Ishraq ,&nbsp;M.F. Mridha ,&nbsp;Jungpil Shin","doi":"10.1016/j.array.2025.100390","DOIUrl":null,"url":null,"abstract":"<div><div>Algorithmic trading has revolutionized financial markets, offering rapid and efficient trade execution. The integration of deep learning (DL) into these systems has further enhanced predictive capabilities, providing sophisticated models that capture complex, non-linear market patterns. This systematic literature review explores recent advancements in the application of DL algorithms to algorithmic trading with a focus on optimizing financial market predictions. We analyze and synthesize the key DL architectures, such as recurrent neural networks (RNN), long short-term memory (LSTM), convolutional neural networks (CNN), and hybrid models, to evaluate their performance in predicting stock prices, volatility, and market trends. The review highlights current challenges, such as data noise, overfitting, and interpretability, while discussing emerging solutions and future research directions. Our findings provide a comprehensive understanding of how DL reshapes algorithmic trading and its potential to improve decision-making processes in volatile financial environments.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"26 ","pages":"Article 100390"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning for algorithmic trading: A systematic review of predictive models and optimization strategies\",\"authors\":\"MD Shahriar Mahmud Bhuiyan ,&nbsp;MD AL Rafi ,&nbsp;Gourab Nicholas Rodrigues ,&nbsp;MD Nazmul Hossain Mir ,&nbsp;Adit Ishraq ,&nbsp;M.F. Mridha ,&nbsp;Jungpil Shin\",\"doi\":\"10.1016/j.array.2025.100390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Algorithmic trading has revolutionized financial markets, offering rapid and efficient trade execution. The integration of deep learning (DL) into these systems has further enhanced predictive capabilities, providing sophisticated models that capture complex, non-linear market patterns. This systematic literature review explores recent advancements in the application of DL algorithms to algorithmic trading with a focus on optimizing financial market predictions. We analyze and synthesize the key DL architectures, such as recurrent neural networks (RNN), long short-term memory (LSTM), convolutional neural networks (CNN), and hybrid models, to evaluate their performance in predicting stock prices, volatility, and market trends. The review highlights current challenges, such as data noise, overfitting, and interpretability, while discussing emerging solutions and future research directions. Our findings provide a comprehensive understanding of how DL reshapes algorithmic trading and its potential to improve decision-making processes in volatile financial environments.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"26 \",\"pages\":\"Article 100390\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005625000177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

算法交易彻底改变了金融市场,提供了快速有效的交易执行。将深度学习(DL)集成到这些系统中,进一步增强了预测能力,提供了能够捕捉复杂、非线性市场模式的复杂模型。这篇系统的文献综述探讨了深度学习算法在算法交易中应用的最新进展,重点是优化金融市场预测。我们分析和综合了关键的深度学习架构,如循环神经网络(RNN)、长短期记忆(LSTM)、卷积神经网络(CNN)和混合模型,以评估它们在预测股票价格、波动性和市场趋势方面的表现。该综述强调了当前的挑战,如数据噪声、过拟合和可解释性,同时讨论了新兴的解决方案和未来的研究方向。我们的研究结果提供了对深度学习如何重塑算法交易及其在动荡的金融环境中改善决策过程的潜力的全面理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for algorithmic trading: A systematic review of predictive models and optimization strategies
Algorithmic trading has revolutionized financial markets, offering rapid and efficient trade execution. The integration of deep learning (DL) into these systems has further enhanced predictive capabilities, providing sophisticated models that capture complex, non-linear market patterns. This systematic literature review explores recent advancements in the application of DL algorithms to algorithmic trading with a focus on optimizing financial market predictions. We analyze and synthesize the key DL architectures, such as recurrent neural networks (RNN), long short-term memory (LSTM), convolutional neural networks (CNN), and hybrid models, to evaluate their performance in predicting stock prices, volatility, and market trends. The review highlights current challenges, such as data noise, overfitting, and interpretability, while discussing emerging solutions and future research directions. Our findings provide a comprehensive understanding of how DL reshapes algorithmic trading and its potential to improve decision-making processes in volatile financial environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信