Hilbert空间中快速振荡函数近似积分的优化

IF 1.4 Q2 MATHEMATICS, APPLIED
Abdullo Hayotov , Samandar Babaev , Abdimumin Kurbonnazarov
{"title":"Hilbert空间中快速振荡函数近似积分的优化","authors":"Abdullo Hayotov ,&nbsp;Samandar Babaev ,&nbsp;Abdimumin Kurbonnazarov","doi":"10.1016/j.rinam.2025.100569","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we construct an optimal quadrature formula in the sense of Sard based on a functional approach for numerical calculation of integrals of rapidly oscillating functions. To solve this problem, we will use Sobolev’s method.</div><div>To do this, we first solve the boundary value problem for an extremal function. To solve the boundary value problem, we use direct and inverse Fourier transforms and find the fundamental solution of the given differential operator. Using the extremal function, we find the norm of the error functional. For the given nodes, we find the minimum value of the error functional norm along the coefficients.</div><div>This quadrature formula is exact for the hyperbolic functions <span><math><mrow><mo>sinh</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>cosh</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and a constant term. In this work, we consider the case <span><math><mrow><mi>ω</mi><mi>h</mi><mo>∉</mo><mi>Z</mi></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>∈</mo><mi>R</mi></mrow></math></span> in the Hilbert space <span><math><mrow><msubsup><mrow><mtext>K</mtext></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</div><div>We apply the constructed quadrature formula for reconstruction of a Computed Tomography image.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100569"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space\",\"authors\":\"Abdullo Hayotov ,&nbsp;Samandar Babaev ,&nbsp;Abdimumin Kurbonnazarov\",\"doi\":\"10.1016/j.rinam.2025.100569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we construct an optimal quadrature formula in the sense of Sard based on a functional approach for numerical calculation of integrals of rapidly oscillating functions. To solve this problem, we will use Sobolev’s method.</div><div>To do this, we first solve the boundary value problem for an extremal function. To solve the boundary value problem, we use direct and inverse Fourier transforms and find the fundamental solution of the given differential operator. Using the extremal function, we find the norm of the error functional. For the given nodes, we find the minimum value of the error functional norm along the coefficients.</div><div>This quadrature formula is exact for the hyperbolic functions <span><math><mrow><mo>sinh</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>cosh</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and a constant term. In this work, we consider the case <span><math><mrow><mi>ω</mi><mi>h</mi><mo>∉</mo><mi>Z</mi></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>∈</mo><mi>R</mi></mrow></math></span> in the Hilbert space <span><math><mrow><msubsup><mrow><mtext>K</mtext></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</div><div>We apply the constructed quadrature formula for reconstruction of a Computed Tomography image.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100569\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们基于快速振荡函数的积分数值计算的泛函方法,构造了Sard意义上的最优正交公式。为了解决这个问题,我们将使用Sobolev的方法。要做到这一点,我们首先解决一个极值函数的边值问题。为了解决边值问题,我们使用傅里叶正变换和傅里叶反变换,求出给定微分算子的基本解。利用极值函数求出误差泛函的范数。对于给定的节点,我们沿着系数找到误差函数范数的最小值。这个正交公式对双曲函数sinh(x) cosh(x)和一个常数项是精确的。本文研究了Hilbert空间K2(3)(0,1)中ωh∈Z和ω∈R的情况。我们将构造的正交公式应用于计算机断层图像的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space
In this work, we construct an optimal quadrature formula in the sense of Sard based on a functional approach for numerical calculation of integrals of rapidly oscillating functions. To solve this problem, we will use Sobolev’s method.
To do this, we first solve the boundary value problem for an extremal function. To solve the boundary value problem, we use direct and inverse Fourier transforms and find the fundamental solution of the given differential operator. Using the extremal function, we find the norm of the error functional. For the given nodes, we find the minimum value of the error functional norm along the coefficients.
This quadrature formula is exact for the hyperbolic functions sinh(x),cosh(x) and a constant term. In this work, we consider the case ωhZ and ωR in the Hilbert space K2(3)(0,1).
We apply the constructed quadrature formula for reconstruction of a Computed Tomography image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信