超越甲烷消耗:探索甲烷营养细菌产生次生代谢物的潜力。

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-02-13 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf030
Sascha M B Krause, Naomi I van den Berg, Kristof Brenzinger, Hans Zweers, Paul L E Bodelier
{"title":"超越甲烷消耗:探索甲烷营养细菌产生次生代谢物的潜力。","authors":"Sascha M B Krause, Naomi I van den Berg, Kristof Brenzinger, Hans Zweers, Paul L E Bodelier","doi":"10.1093/ismeco/ycaf030","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial methane-consuming communities significantly impact biogeochemical processes and greenhouse gas emissions. In this study, we explored secondary metabolites produced by methane-oxidizing bacteria (MOB) and their ecological roles. We analyzed the volatile profiles of four MOB strains under controlled conditions and conducted a meta-analysis using high-quality genomes from 62 cultured MOB strains and 289 metagenome-assembled genomes to investigate their potential for producing secondary metabolites. Results show species-specific volatile production, such as germacrene by <i>Methylobacter luteus</i>, which may play a role in the regulation of environmental methane consumption. The meta-analysis revealed that biosynthetic gene clusters (BGCs) for terpenes and β-lactones were more prevalent in the <i>Methylocystaceae</i> and/or <i>Beijerinckiaceae</i> families, while aryl polyene BGCs were dominant in the <i>Methylococcaceae</i> family, reflecting habitat-specific adaptations. These findings advance our understanding of the metabolic capabilities of MOB and underscore the importance of integrating experimental data with genomic and metabolomic analyses to elucidate their ecology, environmental interactions, and contributions to methane cycling.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf030"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964084/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond methane consumption: exploring the potential of methanotrophic bacteria to produce secondary metabolites.\",\"authors\":\"Sascha M B Krause, Naomi I van den Berg, Kristof Brenzinger, Hans Zweers, Paul L E Bodelier\",\"doi\":\"10.1093/ismeco/ycaf030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial methane-consuming communities significantly impact biogeochemical processes and greenhouse gas emissions. In this study, we explored secondary metabolites produced by methane-oxidizing bacteria (MOB) and their ecological roles. We analyzed the volatile profiles of four MOB strains under controlled conditions and conducted a meta-analysis using high-quality genomes from 62 cultured MOB strains and 289 metagenome-assembled genomes to investigate their potential for producing secondary metabolites. Results show species-specific volatile production, such as germacrene by <i>Methylobacter luteus</i>, which may play a role in the regulation of environmental methane consumption. The meta-analysis revealed that biosynthetic gene clusters (BGCs) for terpenes and β-lactones were more prevalent in the <i>Methylocystaceae</i> and/or <i>Beijerinckiaceae</i> families, while aryl polyene BGCs were dominant in the <i>Methylococcaceae</i> family, reflecting habitat-specific adaptations. These findings advance our understanding of the metabolic capabilities of MOB and underscore the importance of integrating experimental data with genomic and metabolomic analyses to elucidate their ecology, environmental interactions, and contributions to methane cycling.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"5 1\",\"pages\":\"ycaf030\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycaf030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物甲烷消耗群落显著影响生物地球化学过程和温室气体排放。本研究探讨了甲烷氧化菌(MOB)产生的次生代谢物及其生态作用。我们分析了4株MOB菌株在受控条件下的挥发性特征,并利用62株培养的MOB菌株和289个宏基因组组装的基因组进行了荟萃分析,以研究它们产生次生代谢物的潜力。结果表明,黄体甲基杆菌产生的挥发性物质可能在调节环境甲烷消耗中发挥作用。meta分析显示,萜类和β-内酯类生物合成基因簇(BGCs)在甲基藻科和/或Beijerinckiaceae科中更为普遍,而芳基多烯类生物合成基因簇在甲基藻科中占主导地位,反映了生境特异性适应。这些发现促进了我们对MOB代谢能力的理解,并强调了将实验数据与基因组学和代谢组学分析相结合的重要性,以阐明它们的生态学、环境相互作用以及对甲烷循环的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond methane consumption: exploring the potential of methanotrophic bacteria to produce secondary metabolites.

Microbial methane-consuming communities significantly impact biogeochemical processes and greenhouse gas emissions. In this study, we explored secondary metabolites produced by methane-oxidizing bacteria (MOB) and their ecological roles. We analyzed the volatile profiles of four MOB strains under controlled conditions and conducted a meta-analysis using high-quality genomes from 62 cultured MOB strains and 289 metagenome-assembled genomes to investigate their potential for producing secondary metabolites. Results show species-specific volatile production, such as germacrene by Methylobacter luteus, which may play a role in the regulation of environmental methane consumption. The meta-analysis revealed that biosynthetic gene clusters (BGCs) for terpenes and β-lactones were more prevalent in the Methylocystaceae and/or Beijerinckiaceae families, while aryl polyene BGCs were dominant in the Methylococcaceae family, reflecting habitat-specific adaptations. These findings advance our understanding of the metabolic capabilities of MOB and underscore the importance of integrating experimental data with genomic and metabolomic analyses to elucidate their ecology, environmental interactions, and contributions to methane cycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信