Miro1 n端GTPase功能的恢复可通过Drp1调控缓解产前应激诱导的线粒体分裂。

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Gee Euhn Choi, Ji Yong Park, Mo Ran Park, Chang Woo Chae, Young Hyun Jung, Jae Ryong Lim, Jee Hyeon Yoon, Ji Hyeon Cho, Ho Jae Han
{"title":"Miro1 n端GTPase功能的恢复可通过Drp1调控缓解产前应激诱导的线粒体分裂。","authors":"Gee Euhn Choi, Ji Yong Park, Mo Ran Park, Chang Woo Chae, Young Hyun Jung, Jae Ryong Lim, Jee Hyeon Yoon, Ji Hyeon Cho, Ho Jae Han","doi":"10.1186/s12964-025-02172-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prenatal stress exposure irreversibly impairs mitochondrial dynamics, including mitochondrial trafficking and morphology in offspring, leading to neurodevelopmental and neuropsychiatric disorders in adulthood. Thus, understanding the molecular mechanism controlling mitochondrial dynamics in differentiating neurons is crucial to prevent the prenatal stress-induced impairments in behavior. We investigated the interplay between mitochondrial transport and fusion/fission in differentiating neurons exposed to prenatal stress, leading to ensuing behavior impairments, and then tried to identify the primary regulator that modulates both phenomena.</p><p><strong>Methods: </strong>We used primary hippocampal neurons of mice exposed to prenatal stress and human induced-pluripotent stem cell (hiPSC)-derived neurons, for investigating the impact of glucocorticoid on mitochondrial dynamics during differentiation. For constructing mouse models, we used AAV vectors into mouse pups exposed to prenatal stress to regulate protein expressions in hippocampal regions.</p><p><strong>Results: </strong>We first observed that prenatal exposure to glucocorticoids induced motility arrest and fragmentation of mitochondria in differentiating neurons derived from mouse fetuses (E18) and human induced pluripotent stem cells (hiPSCs). Further, glucocorticoid exposure during neurogenesis selectively downregulated Miro1 and increased Drp1 phosphorylation (Ser616). MIRO1 overexpression restored mitochondrial motility and increased intramitochondrial calcium influx through ER-mitochondria contact (ERMC) formation. Furthermore, we determined that the N-terminal GTPase domain of Miro1 plays a critical role in ERMC formation, which then decreased Drp1 phosphorylation (Ser616). Similarly, prenatal corticosterone exposure led to impaired neuropsychiatric and cognitive function in the offspring by affecting mitochondrial distribution and synaptogenesis, rescued by Miro1<sup>WT</sup>, but not N-terminal GTPase active form Miro1<sup>P26V</sup>, expression.</p><p><strong>Conclusion: </strong>Prenatal glucocorticoid-mediated Miro1 downregulation contributes to dysfunction in mitochondrial dynamics through Drp1 phosphorylation (Ser616) in differentiating neurons.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"166"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967123/pdf/","citationCount":"0","resultStr":"{\"title\":\"Restoration of Miro1's N-terminal GTPase function alleviates prenatal stress-induced mitochondrial fission via Drp1 modulation.\",\"authors\":\"Gee Euhn Choi, Ji Yong Park, Mo Ran Park, Chang Woo Chae, Young Hyun Jung, Jae Ryong Lim, Jee Hyeon Yoon, Ji Hyeon Cho, Ho Jae Han\",\"doi\":\"10.1186/s12964-025-02172-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Prenatal stress exposure irreversibly impairs mitochondrial dynamics, including mitochondrial trafficking and morphology in offspring, leading to neurodevelopmental and neuropsychiatric disorders in adulthood. Thus, understanding the molecular mechanism controlling mitochondrial dynamics in differentiating neurons is crucial to prevent the prenatal stress-induced impairments in behavior. We investigated the interplay between mitochondrial transport and fusion/fission in differentiating neurons exposed to prenatal stress, leading to ensuing behavior impairments, and then tried to identify the primary regulator that modulates both phenomena.</p><p><strong>Methods: </strong>We used primary hippocampal neurons of mice exposed to prenatal stress and human induced-pluripotent stem cell (hiPSC)-derived neurons, for investigating the impact of glucocorticoid on mitochondrial dynamics during differentiation. For constructing mouse models, we used AAV vectors into mouse pups exposed to prenatal stress to regulate protein expressions in hippocampal regions.</p><p><strong>Results: </strong>We first observed that prenatal exposure to glucocorticoids induced motility arrest and fragmentation of mitochondria in differentiating neurons derived from mouse fetuses (E18) and human induced pluripotent stem cells (hiPSCs). Further, glucocorticoid exposure during neurogenesis selectively downregulated Miro1 and increased Drp1 phosphorylation (Ser616). MIRO1 overexpression restored mitochondrial motility and increased intramitochondrial calcium influx through ER-mitochondria contact (ERMC) formation. Furthermore, we determined that the N-terminal GTPase domain of Miro1 plays a critical role in ERMC formation, which then decreased Drp1 phosphorylation (Ser616). Similarly, prenatal corticosterone exposure led to impaired neuropsychiatric and cognitive function in the offspring by affecting mitochondrial distribution and synaptogenesis, rescued by Miro1<sup>WT</sup>, but not N-terminal GTPase active form Miro1<sup>P26V</sup>, expression.</p><p><strong>Conclusion: </strong>Prenatal glucocorticoid-mediated Miro1 downregulation contributes to dysfunction in mitochondrial dynamics through Drp1 phosphorylation (Ser616) in differentiating neurons.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"166\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967123/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02172-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02172-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:产前应激暴露不可逆转地损害线粒体动力学,包括后代线粒体运输和形态,导致成年后神经发育和神经精神障碍。因此,了解控制线粒体分化神经元动力学的分子机制对于预防产前应激诱导的行为障碍至关重要。我们研究了线粒体运输和融合/裂变之间的相互作用,在分化神经元暴露于产前应激,导致随后的行为障碍,然后试图确定主要调节这两种现象。方法:利用暴露于产前应激的小鼠海马原代神经元和人诱导多能干细胞(hiPSC)来源的神经元,研究糖皮质激素对分化过程中线粒体动力学的影响。为了构建小鼠模型,我们将AAV载体植入暴露于产前应激的小鼠幼鼠体内,以调节海马区蛋白的表达。结果:我们首先观察到,产前暴露于糖皮质激素会导致小鼠胎儿(E18)和人诱导多能干细胞(hiPSCs)分化神经元的运动阻滞和线粒体断裂。此外,在神经发生过程中,糖皮质激素暴露选择性地下调了mir1并增加了Drp1的磷酸化(Ser616)。MIRO1过表达恢复线粒体运动,并通过er -线粒体接触(ERMC)形成增加线粒体内钙内流。此外,我们确定Miro1的n端GTPase结构域在ERMC形成中起关键作用,然后降低Drp1磷酸化(Ser616)。同样,产前皮质酮暴露通过影响线粒体分布和突触发生导致后代神经精神和认知功能受损,这些线粒体分布和突触发生由Miro1WT拯救,而不是n端GTPase活性形式Miro1P26V的表达。结论:产前糖皮质激素介导的mir1下调通过Drp1磷酸化(Ser616)参与分化神经元线粒体动力学功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restoration of Miro1's N-terminal GTPase function alleviates prenatal stress-induced mitochondrial fission via Drp1 modulation.

Background: Prenatal stress exposure irreversibly impairs mitochondrial dynamics, including mitochondrial trafficking and morphology in offspring, leading to neurodevelopmental and neuropsychiatric disorders in adulthood. Thus, understanding the molecular mechanism controlling mitochondrial dynamics in differentiating neurons is crucial to prevent the prenatal stress-induced impairments in behavior. We investigated the interplay between mitochondrial transport and fusion/fission in differentiating neurons exposed to prenatal stress, leading to ensuing behavior impairments, and then tried to identify the primary regulator that modulates both phenomena.

Methods: We used primary hippocampal neurons of mice exposed to prenatal stress and human induced-pluripotent stem cell (hiPSC)-derived neurons, for investigating the impact of glucocorticoid on mitochondrial dynamics during differentiation. For constructing mouse models, we used AAV vectors into mouse pups exposed to prenatal stress to regulate protein expressions in hippocampal regions.

Results: We first observed that prenatal exposure to glucocorticoids induced motility arrest and fragmentation of mitochondria in differentiating neurons derived from mouse fetuses (E18) and human induced pluripotent stem cells (hiPSCs). Further, glucocorticoid exposure during neurogenesis selectively downregulated Miro1 and increased Drp1 phosphorylation (Ser616). MIRO1 overexpression restored mitochondrial motility and increased intramitochondrial calcium influx through ER-mitochondria contact (ERMC) formation. Furthermore, we determined that the N-terminal GTPase domain of Miro1 plays a critical role in ERMC formation, which then decreased Drp1 phosphorylation (Ser616). Similarly, prenatal corticosterone exposure led to impaired neuropsychiatric and cognitive function in the offspring by affecting mitochondrial distribution and synaptogenesis, rescued by Miro1WT, but not N-terminal GTPase active form Miro1P26V, expression.

Conclusion: Prenatal glucocorticoid-mediated Miro1 downregulation contributes to dysfunction in mitochondrial dynamics through Drp1 phosphorylation (Ser616) in differentiating neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信