达格列净通过调节IGF-1R信号改善2型糖尿病相关神经病变

IF 6.2
Prabhsimran Kaur, Tashvinder Singh, Laxmipriya Jena, Tanya Gupta, Manjit Kaur Rana, Sandeep Singh, Randhir Singh, Puneet Kumar, Anjana Munshi
{"title":"达格列净通过调节IGF-1R信号改善2型糖尿病相关神经病变","authors":"Prabhsimran Kaur, Tashvinder Singh, Laxmipriya Jena, Tanya Gupta, Manjit Kaur Rana, Sandeep Singh, Randhir Singh, Puneet Kumar, Anjana Munshi","doi":"10.1007/s11481-025-10200-x","DOIUrl":null,"url":null,"abstract":"<p><p>Dapagliflozin, an approved SGLT2 inhibitor, has been shown to have extra-glycemic effects like cardio-reno protection. However, the neuroprotective effects of SGLT2 inhibitors against diabetic neuropathy (DN) have not been explored. The current study aimed to determine the neuroprotective potential of Dapagliflozin against STZ-NAD-induced DN in Wistar rats via IGF-1 signaling. DN was induced by STZ-NAD in male Wistar rats. After 60 days of induction, behavioural tests were conducted to access DN, and treatment with Dapagliflozin (0.75 mg/kg & 1.50 mg/kg) was initiated for 30 days. At the end of the study, the brain and sciatic nerve were isolated and expression analysis of IGF-1R signaling molecules was carried out using western blotting, qRTPCR, and immunohistochemistry. Structural changes in the brain and sciatic nerve were ascertained by histopathology. The results showed that treatment with Dapagliflozin improved behavioural parameters in STZ-NAD-induced DN rats. The decreased expression levels of IGF1R signaling pathway molecules and increased expression of p-AKT were found to increase and decrease in the brain and sciatic nerve, respectively after the treatment. Histological studies demonstrated the restoration of normal architecture of the brain and sciatic nerve after treatment with dapagliflozin. The altered expression of IGF-1R signaling molecules established the neuroprotective potential of dapagliflozin against DN.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"32"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dapagliflozin Ameliorate Type-2 Diabetes Associated Neuropathy via Regulation of IGF-1R Signaling.\",\"authors\":\"Prabhsimran Kaur, Tashvinder Singh, Laxmipriya Jena, Tanya Gupta, Manjit Kaur Rana, Sandeep Singh, Randhir Singh, Puneet Kumar, Anjana Munshi\",\"doi\":\"10.1007/s11481-025-10200-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dapagliflozin, an approved SGLT2 inhibitor, has been shown to have extra-glycemic effects like cardio-reno protection. However, the neuroprotective effects of SGLT2 inhibitors against diabetic neuropathy (DN) have not been explored. The current study aimed to determine the neuroprotective potential of Dapagliflozin against STZ-NAD-induced DN in Wistar rats via IGF-1 signaling. DN was induced by STZ-NAD in male Wistar rats. After 60 days of induction, behavioural tests were conducted to access DN, and treatment with Dapagliflozin (0.75 mg/kg & 1.50 mg/kg) was initiated for 30 days. At the end of the study, the brain and sciatic nerve were isolated and expression analysis of IGF-1R signaling molecules was carried out using western blotting, qRTPCR, and immunohistochemistry. Structural changes in the brain and sciatic nerve were ascertained by histopathology. The results showed that treatment with Dapagliflozin improved behavioural parameters in STZ-NAD-induced DN rats. The decreased expression levels of IGF1R signaling pathway molecules and increased expression of p-AKT were found to increase and decrease in the brain and sciatic nerve, respectively after the treatment. Histological studies demonstrated the restoration of normal architecture of the brain and sciatic nerve after treatment with dapagliflozin. The altered expression of IGF-1R signaling molecules established the neuroprotective potential of dapagliflozin against DN.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\"20 1\",\"pages\":\"32\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-025-10200-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10200-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Dapagliflozin是一种被批准的SGLT2抑制剂,已被证明具有额外的血糖作用,如心脏-肾保护。然而,SGLT2抑制剂对糖尿病神经病变(DN)的神经保护作用尚未探讨。本研究旨在通过IGF-1信号传导确定达格列净对stz - ad诱导的Wistar大鼠DN的神经保护作用。STZ-NAD诱导雄性Wistar大鼠DN。诱导60天后,进行行为测试以获取DN,并开始使用达格列净(0.75 mg/kg和1.50 mg/kg)治疗30天。研究结束时,分离大鼠大脑和坐骨神经,采用western blotting、qRTPCR、免疫组织化学等方法分析IGF-1R信号分子的表达。脑组织及坐骨神经的结构改变经组织病理学证实。结果显示,达格列净可改善stz - nad诱导的DN大鼠的行为参数。治疗后,脑和坐骨神经中IGF1R信号通路分子表达水平降低,p-AKT表达水平升高。组织学研究表明,经达格列净治疗后,大脑和坐骨神经的正常结构得以恢复。IGF-1R信号分子表达的改变确立了达格列净对DN的神经保护潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dapagliflozin Ameliorate Type-2 Diabetes Associated Neuropathy via Regulation of IGF-1R Signaling.

Dapagliflozin, an approved SGLT2 inhibitor, has been shown to have extra-glycemic effects like cardio-reno protection. However, the neuroprotective effects of SGLT2 inhibitors against diabetic neuropathy (DN) have not been explored. The current study aimed to determine the neuroprotective potential of Dapagliflozin against STZ-NAD-induced DN in Wistar rats via IGF-1 signaling. DN was induced by STZ-NAD in male Wistar rats. After 60 days of induction, behavioural tests were conducted to access DN, and treatment with Dapagliflozin (0.75 mg/kg & 1.50 mg/kg) was initiated for 30 days. At the end of the study, the brain and sciatic nerve were isolated and expression analysis of IGF-1R signaling molecules was carried out using western blotting, qRTPCR, and immunohistochemistry. Structural changes in the brain and sciatic nerve were ascertained by histopathology. The results showed that treatment with Dapagliflozin improved behavioural parameters in STZ-NAD-induced DN rats. The decreased expression levels of IGF1R signaling pathway molecules and increased expression of p-AKT were found to increase and decrease in the brain and sciatic nerve, respectively after the treatment. Histological studies demonstrated the restoration of normal architecture of the brain and sciatic nerve after treatment with dapagliflozin. The altered expression of IGF-1R signaling molecules established the neuroprotective potential of dapagliflozin against DN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信