Yan Yang, Zhenfeng Zhang, Junwei Wang, Keyun Fu, Dongyang Li, Hao He, Chang Shu
{"title":"生物可降解金属血管支架的研究进展。","authors":"Yan Yang, Zhenfeng Zhang, Junwei Wang, Keyun Fu, Dongyang Li, Hao He, Chang Shu","doi":"10.11817/j.issn.1672-7347.2024.230514","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular stents are an essential tool in cardiovascular interventional therapy, and their demand is growing with the increasing incidence of cardiovascular diseases. Compared with permanent stents, which are prone to in-stent restenosis, and drug-eluting stents, which may cause late stent thrombosis, biodegradable stents offer advantages. After providing early radial support to prevent elastic recoil, biodegradable stents gradually degrade, allowing the vessel to regain its natural physiological contractility and undergo positive remodeling. A review of the current mainstream biodegradable metal stents, magnesium-based, iron-based, and zinc-based alloys, shows promising findings in both preclinical and clinical research. Magnesium-based stents exhibit good operability and low thrombosis rates, but their limitations include rapid degradation, hydrogen evolution, and significant pH changes in the microenvironment. Iron-based stents demonstrate excellent mechanical strength, formability, biocompatibility, and hemocompatibility, but their slow corrosion rate hampers broader clinical application; accelerating degradation remains key. Zinc-based alloys have a moderate degradation rate but relatively low mechanical strength; enhancing stent strength by alloying with other elements is the main improvement direction for zinc-based stents.</p>","PeriodicalId":39801,"journal":{"name":"中南大学学报(医学版)","volume":"49 11","pages":"1861-1868"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964820/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progress in research and development of biodegradable metallic vascular stents.\",\"authors\":\"Yan Yang, Zhenfeng Zhang, Junwei Wang, Keyun Fu, Dongyang Li, Hao He, Chang Shu\",\"doi\":\"10.11817/j.issn.1672-7347.2024.230514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular stents are an essential tool in cardiovascular interventional therapy, and their demand is growing with the increasing incidence of cardiovascular diseases. Compared with permanent stents, which are prone to in-stent restenosis, and drug-eluting stents, which may cause late stent thrombosis, biodegradable stents offer advantages. After providing early radial support to prevent elastic recoil, biodegradable stents gradually degrade, allowing the vessel to regain its natural physiological contractility and undergo positive remodeling. A review of the current mainstream biodegradable metal stents, magnesium-based, iron-based, and zinc-based alloys, shows promising findings in both preclinical and clinical research. Magnesium-based stents exhibit good operability and low thrombosis rates, but their limitations include rapid degradation, hydrogen evolution, and significant pH changes in the microenvironment. Iron-based stents demonstrate excellent mechanical strength, formability, biocompatibility, and hemocompatibility, but their slow corrosion rate hampers broader clinical application; accelerating degradation remains key. Zinc-based alloys have a moderate degradation rate but relatively low mechanical strength; enhancing stent strength by alloying with other elements is the main improvement direction for zinc-based stents.</p>\",\"PeriodicalId\":39801,\"journal\":{\"name\":\"中南大学学报(医学版)\",\"volume\":\"49 11\",\"pages\":\"1861-1868\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964820/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中南大学学报(医学版)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.11817/j.issn.1672-7347.2024.230514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中南大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11817/j.issn.1672-7347.2024.230514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Progress in research and development of biodegradable metallic vascular stents.
Vascular stents are an essential tool in cardiovascular interventional therapy, and their demand is growing with the increasing incidence of cardiovascular diseases. Compared with permanent stents, which are prone to in-stent restenosis, and drug-eluting stents, which may cause late stent thrombosis, biodegradable stents offer advantages. After providing early radial support to prevent elastic recoil, biodegradable stents gradually degrade, allowing the vessel to regain its natural physiological contractility and undergo positive remodeling. A review of the current mainstream biodegradable metal stents, magnesium-based, iron-based, and zinc-based alloys, shows promising findings in both preclinical and clinical research. Magnesium-based stents exhibit good operability and low thrombosis rates, but their limitations include rapid degradation, hydrogen evolution, and significant pH changes in the microenvironment. Iron-based stents demonstrate excellent mechanical strength, formability, biocompatibility, and hemocompatibility, but their slow corrosion rate hampers broader clinical application; accelerating degradation remains key. Zinc-based alloys have a moderate degradation rate but relatively low mechanical strength; enhancing stent strength by alloying with other elements is the main improvement direction for zinc-based stents.
期刊介绍:
Journal of Central South University (Medical Sciences), founded in 1958, is a comprehensive academic journal of medicine and health sponsored by the Ministry of Education and Central South University. The journal has been included in many important databases and authoritative abstract journals at home and abroad, such as the American Medline, Pubmed and its Index Medicus (IM), the Netherlands Medical Abstracts (EM), the American Chemical Abstracts (CA), the WHO Western Pacific Region Medical Index (WPRIM), and the Chinese Science Citation Database (Core Database) (CSCD); it is a statistical source journal of Chinese scientific and technological papers, a Chinese core journal, and a "double-effect" journal of the Chinese Journal Matrix; it is the "2nd, 3rd, and 4th China University Excellent Science and Technology Journal", "2008 China Excellent Science and Technology Journal", "RCCSE China Authoritative Academic Journal (A+)" and Hunan Province's "Top Ten Science and Technology Journals". The purpose of the journal is to reflect the new achievements, new technologies, and new experiences in medical research, medical treatment, and teaching, report new medical trends at home and abroad, promote academic exchanges, improve academic standards, and promote scientific and technological progress.