{"title":"在脊椎动物的声音交流中,声域扩展了信号的多样性。","authors":"Christian T Herbst, Coen P H Elemans","doi":"10.1098/rstb.2024.0006","DOIUrl":null,"url":null,"abstract":"<p><p>Among air-breathing tetrapods, the most common sound production mechanism is flow-induced self-sustained tissue oscillation, aka voiced sound production, driven by inherently nonlinear physical processes. Some signature features like deterministic chaos have received particular attention in bioacoustics as nonlinear phenomena (NLP). However, one type of NLP that extends frequency ranges and enriches timbres has received much less focus in comparative bioacoustics: vocal registers. Controlled by muscle activity, vocal registers constitute distinct periodic vibratory states of vocal tissues. Transitions between vocal registers often lead to abrupt fundamental frequency jumps, which are, e.g., deliberately used in human alpine yodelling, for example. Theoretical work suggests that register transitions are caused by saddle-node-in-limit-cycle bifurcations. Here, we review the biophysical underpinnings of vocal registers and what signatures they leave in vocal fold kinematics and acoustics in the best studied species: humans. Apart from human speech and song, registers have been described only in a few animal taxa, but the occurrence of signature features suggests that vocal registers could be much more common across vertebrates than currently appreciated. We suggest that registers are a fundamental trait of voice production and that they are favoured in selection because they vastly extend and diversify the acoustic signalling space. This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions.'</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1923","pages":"20240006"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966170/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vocal registers expand signal diversity in vertebrate vocal communication.\",\"authors\":\"Christian T Herbst, Coen P H Elemans\",\"doi\":\"10.1098/rstb.2024.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among air-breathing tetrapods, the most common sound production mechanism is flow-induced self-sustained tissue oscillation, aka voiced sound production, driven by inherently nonlinear physical processes. Some signature features like deterministic chaos have received particular attention in bioacoustics as nonlinear phenomena (NLP). However, one type of NLP that extends frequency ranges and enriches timbres has received much less focus in comparative bioacoustics: vocal registers. Controlled by muscle activity, vocal registers constitute distinct periodic vibratory states of vocal tissues. Transitions between vocal registers often lead to abrupt fundamental frequency jumps, which are, e.g., deliberately used in human alpine yodelling, for example. Theoretical work suggests that register transitions are caused by saddle-node-in-limit-cycle bifurcations. Here, we review the biophysical underpinnings of vocal registers and what signatures they leave in vocal fold kinematics and acoustics in the best studied species: humans. Apart from human speech and song, registers have been described only in a few animal taxa, but the occurrence of signature features suggests that vocal registers could be much more common across vertebrates than currently appreciated. We suggest that registers are a fundamental trait of voice production and that they are favoured in selection because they vastly extend and diversify the acoustic signalling space. This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions.'</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":\"380 1923\",\"pages\":\"20240006\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966170/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2024.0006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2024.0006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Vocal registers expand signal diversity in vertebrate vocal communication.
Among air-breathing tetrapods, the most common sound production mechanism is flow-induced self-sustained tissue oscillation, aka voiced sound production, driven by inherently nonlinear physical processes. Some signature features like deterministic chaos have received particular attention in bioacoustics as nonlinear phenomena (NLP). However, one type of NLP that extends frequency ranges and enriches timbres has received much less focus in comparative bioacoustics: vocal registers. Controlled by muscle activity, vocal registers constitute distinct periodic vibratory states of vocal tissues. Transitions between vocal registers often lead to abrupt fundamental frequency jumps, which are, e.g., deliberately used in human alpine yodelling, for example. Theoretical work suggests that register transitions are caused by saddle-node-in-limit-cycle bifurcations. Here, we review the biophysical underpinnings of vocal registers and what signatures they leave in vocal fold kinematics and acoustics in the best studied species: humans. Apart from human speech and song, registers have been described only in a few animal taxa, but the occurrence of signature features suggests that vocal registers could be much more common across vertebrates than currently appreciated. We suggest that registers are a fundamental trait of voice production and that they are favoured in selection because they vastly extend and diversify the acoustic signalling space. This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions.'
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.