过渡和技巧:鸟类声音中的非线性现象。

IF 5.4 2区 生物学 Q1 BIOLOGY
Ana Amador, Gabriel B Mindlin, Coen P H Elemans
{"title":"过渡和技巧:鸟类声音中的非线性现象。","authors":"Ana Amador, Gabriel B Mindlin, Coen P H Elemans","doi":"10.1098/rstb.2024.0007","DOIUrl":null,"url":null,"abstract":"<p><p>Birds evolved a novel vocal organ, the syrinx, that exhibits a high anatomical diversity. In the few species investigated, the syrinx can contain up to three pairs of functional syringeal vocal folds, acting as independent sound sources, and eight pairs of muscles. This rich variety in vocal structures and motor control results in a wide range of nonlinear phenomena (NLPs) and interactions that are distinct to avian vocal physiology, with many fascinating mechanisms yet to be discovered. Here, we review the occurrence of classical signatures of nonlinear dynamics, such as NLPs, including frequency jumps and transitions to chaos in birds. However, birds employ several additional unique tricks and transitions of inherent nonlinear dynamical nature that further enrich their vocal dynamics and are relevant for understanding the motor control of their vocalizations. Particularly, saddle-node in limit cycle (SNILC) bifurcations can switch sounds from tonal to harmonically rich and change the physiological control of fundamental frequency. In mammalian phonation, these bifurcations are mostly explored in the context of register transitions but could be equally relevant to altering vocal fold dynamical behaviour. Due to their diverse anatomy compared to mammals, birds provide unique opportunities to explore rich nonlinear dynamics in vocal production.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1923","pages":"20240007"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966160/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transitions and tricks: nonlinear phenomena in the avian voice.\",\"authors\":\"Ana Amador, Gabriel B Mindlin, Coen P H Elemans\",\"doi\":\"10.1098/rstb.2024.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Birds evolved a novel vocal organ, the syrinx, that exhibits a high anatomical diversity. In the few species investigated, the syrinx can contain up to three pairs of functional syringeal vocal folds, acting as independent sound sources, and eight pairs of muscles. This rich variety in vocal structures and motor control results in a wide range of nonlinear phenomena (NLPs) and interactions that are distinct to avian vocal physiology, with many fascinating mechanisms yet to be discovered. Here, we review the occurrence of classical signatures of nonlinear dynamics, such as NLPs, including frequency jumps and transitions to chaos in birds. However, birds employ several additional unique tricks and transitions of inherent nonlinear dynamical nature that further enrich their vocal dynamics and are relevant for understanding the motor control of their vocalizations. Particularly, saddle-node in limit cycle (SNILC) bifurcations can switch sounds from tonal to harmonically rich and change the physiological control of fundamental frequency. In mammalian phonation, these bifurcations are mostly explored in the context of register transitions but could be equally relevant to altering vocal fold dynamical behaviour. Due to their diverse anatomy compared to mammals, birds provide unique opportunities to explore rich nonlinear dynamics in vocal production.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":\"380 1923\",\"pages\":\"20240007\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966160/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2024.0007\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2024.0007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

鸟类进化出了一种新的发声器官——鸣管,它具有高度的解剖学多样性。在少数被调查的物种中,鸣管可以包含多达三对功能齐全的鸣管声带,作为独立的声源,以及八对肌肉。这种丰富多样的发声结构和运动控制导致了广泛的非线性现象(nlp)和相互作用,这些现象与鸟类发声生理学不同,有许多迷人的机制尚未被发现。在这里,我们回顾了非线性动力学的经典特征,如nlp,包括鸟类的频率跳变和向混沌的过渡。然而,鸟类采用了一些额外的独特技巧和固有的非线性动力学性质的转换,进一步丰富了它们的发声动力学,并与理解它们发声的运动控制有关。特别是,极限环鞍节点分岔可以将声音从音调切换到谐波丰富,并改变对基频的生理控制。在哺乳动物发声中,这些分岔主要是在音域转换的背景下探索的,但也可能与改变声带动态行为同样相关。由于与哺乳动物相比,鸟类的解剖结构不同,因此为探索声音产生中丰富的非线性动态提供了独特的机会。本文是“脊椎动物发声的非线性现象:机制和交流功能”主题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transitions and tricks: nonlinear phenomena in the avian voice.

Birds evolved a novel vocal organ, the syrinx, that exhibits a high anatomical diversity. In the few species investigated, the syrinx can contain up to three pairs of functional syringeal vocal folds, acting as independent sound sources, and eight pairs of muscles. This rich variety in vocal structures and motor control results in a wide range of nonlinear phenomena (NLPs) and interactions that are distinct to avian vocal physiology, with many fascinating mechanisms yet to be discovered. Here, we review the occurrence of classical signatures of nonlinear dynamics, such as NLPs, including frequency jumps and transitions to chaos in birds. However, birds employ several additional unique tricks and transitions of inherent nonlinear dynamical nature that further enrich their vocal dynamics and are relevant for understanding the motor control of their vocalizations. Particularly, saddle-node in limit cycle (SNILC) bifurcations can switch sounds from tonal to harmonically rich and change the physiological control of fundamental frequency. In mammalian phonation, these bifurcations are mostly explored in the context of register transitions but could be equally relevant to altering vocal fold dynamical behaviour. Due to their diverse anatomy compared to mammals, birds provide unique opportunities to explore rich nonlinear dynamics in vocal production.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信