{"title":"将非线性动力学应用于语音:历史视角。","authors":"W Tecumseh Fitch","doi":"10.1098/rstb.2024.0024","DOIUrl":null,"url":null,"abstract":"<p><p>The recognition that nonlinear phenomena, including subharmonics, bifurcations and deterministic chaos, are present in human and animal vocalizations is a relatively recent one. I give a brief history of this revolution in our understanding of the voice, based on interviews with some of the key players and personal experience. Most of the key concepts and mathematical principles of nonlinear dynamics were already well worked out in the early 1980s. In the early 1990s, physicist Hanspeter Herzel and colleagues in Berlin recognized that these principles are applicable to the human voice, initially to baby cries. The physics and physiology underlying many of these nonlinear phenomena had remained mysterious up until then. This insight was later generalized to animal vocalizations. Nonlinear phenomena play a relatively peripheral role in most human vocal communication but are a common feature of many animal vocalizations. The broad recognition of the existence of nonlinear vocalizations, and the quantitative study of their production and perception, has now fuelled important and exciting advances in our understanding of animal communication. I concentrate on how the core concepts came into focus, and on their initial application to an ever-wider circle of call types and species, and end with a brief prospectus for the future.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1923","pages":"20240024"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966167/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applying nonlinear dynamics to the voice: a historical perspective.\",\"authors\":\"W Tecumseh Fitch\",\"doi\":\"10.1098/rstb.2024.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recognition that nonlinear phenomena, including subharmonics, bifurcations and deterministic chaos, are present in human and animal vocalizations is a relatively recent one. I give a brief history of this revolution in our understanding of the voice, based on interviews with some of the key players and personal experience. Most of the key concepts and mathematical principles of nonlinear dynamics were already well worked out in the early 1980s. In the early 1990s, physicist Hanspeter Herzel and colleagues in Berlin recognized that these principles are applicable to the human voice, initially to baby cries. The physics and physiology underlying many of these nonlinear phenomena had remained mysterious up until then. This insight was later generalized to animal vocalizations. Nonlinear phenomena play a relatively peripheral role in most human vocal communication but are a common feature of many animal vocalizations. The broad recognition of the existence of nonlinear vocalizations, and the quantitative study of their production and perception, has now fuelled important and exciting advances in our understanding of animal communication. I concentrate on how the core concepts came into focus, and on their initial application to an ever-wider circle of call types and species, and end with a brief prospectus for the future.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":\"380 1923\",\"pages\":\"20240024\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2024.0024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2024.0024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Applying nonlinear dynamics to the voice: a historical perspective.
The recognition that nonlinear phenomena, including subharmonics, bifurcations and deterministic chaos, are present in human and animal vocalizations is a relatively recent one. I give a brief history of this revolution in our understanding of the voice, based on interviews with some of the key players and personal experience. Most of the key concepts and mathematical principles of nonlinear dynamics were already well worked out in the early 1980s. In the early 1990s, physicist Hanspeter Herzel and colleagues in Berlin recognized that these principles are applicable to the human voice, initially to baby cries. The physics and physiology underlying many of these nonlinear phenomena had remained mysterious up until then. This insight was later generalized to animal vocalizations. Nonlinear phenomena play a relatively peripheral role in most human vocal communication but are a common feature of many animal vocalizations. The broad recognition of the existence of nonlinear vocalizations, and the quantitative study of their production and perception, has now fuelled important and exciting advances in our understanding of animal communication. I concentrate on how the core concepts came into focus, and on their initial application to an ever-wider circle of call types and species, and end with a brief prospectus for the future.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.