Miao Tian, Shurui Li, Ren Xu, Andrzej Cichocki, Jing Jin
{"title":"基于脑电图信号的上肢运动轨迹检测的可解释回归方法。","authors":"Miao Tian, Shurui Li, Ren Xu, Andrzej Cichocki, Jing Jin","doi":"10.1109/TBME.2025.3557255","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The motion trajectory prediction (MTP) based brain-computer interface (BCI) leverages electroencephalography (EEG) signals to reconstruct the three-dimensional trajectory of upper limb motion, which is pivotal for the advancement of prosthetic devices that can assist motor-disabled individuals. Most research focused on improving the performance of regression models while neglecting the correlation between the implicit information extracted from EEG features across various frequency bands with limb kinematics. Current work aims to identify key channels that capture information related to various motion execution movements from different frequency bands and reconstruct three-dimensional motion trajectories based on EEG features.</p><p><strong>Methods: </strong>We propose an interpretable motion trajectory regression framework that extracts bandpower features from different frequency bands and concatenates them into multi-band fusion features. The extreme gradient boosting regression model with Bayesian optimization and Shapley additive explanation methods are introduced to provide further explanation.</p><p><strong>Results: </strong>The experimental results demonstrate that the proposed method achieves a mean Pearson correlation coefficient (PCC) value of 0.452, outperforming traditional regression models.</p><p><strong>Conclusion: </strong>Our findings reveal that the contralateral side contributes the most to motion trajectory regression than the ipsilateral side which improves the clarity and interpretability of the motion trajectory regression model. Specifically, the feature from channel C5 in the Mu band is crucial for the movement of the right hand, while the feature from channel C3 in the Beta band plays a vital role.</p><p><strong>Significance: </strong>This work provides a novel perspective on the comprehensive study of movement disorders.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Interpretable Regression Method for Upper Limb Motion Trajectories Detection with EEG Signals.\",\"authors\":\"Miao Tian, Shurui Li, Ren Xu, Andrzej Cichocki, Jing Jin\",\"doi\":\"10.1109/TBME.2025.3557255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The motion trajectory prediction (MTP) based brain-computer interface (BCI) leverages electroencephalography (EEG) signals to reconstruct the three-dimensional trajectory of upper limb motion, which is pivotal for the advancement of prosthetic devices that can assist motor-disabled individuals. Most research focused on improving the performance of regression models while neglecting the correlation between the implicit information extracted from EEG features across various frequency bands with limb kinematics. Current work aims to identify key channels that capture information related to various motion execution movements from different frequency bands and reconstruct three-dimensional motion trajectories based on EEG features.</p><p><strong>Methods: </strong>We propose an interpretable motion trajectory regression framework that extracts bandpower features from different frequency bands and concatenates them into multi-band fusion features. The extreme gradient boosting regression model with Bayesian optimization and Shapley additive explanation methods are introduced to provide further explanation.</p><p><strong>Results: </strong>The experimental results demonstrate that the proposed method achieves a mean Pearson correlation coefficient (PCC) value of 0.452, outperforming traditional regression models.</p><p><strong>Conclusion: </strong>Our findings reveal that the contralateral side contributes the most to motion trajectory regression than the ipsilateral side which improves the clarity and interpretability of the motion trajectory regression model. Specifically, the feature from channel C5 in the Mu band is crucial for the movement of the right hand, while the feature from channel C3 in the Beta band plays a vital role.</p><p><strong>Significance: </strong>This work provides a novel perspective on the comprehensive study of movement disorders.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3557255\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3557255","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An Interpretable Regression Method for Upper Limb Motion Trajectories Detection with EEG Signals.
Objective: The motion trajectory prediction (MTP) based brain-computer interface (BCI) leverages electroencephalography (EEG) signals to reconstruct the three-dimensional trajectory of upper limb motion, which is pivotal for the advancement of prosthetic devices that can assist motor-disabled individuals. Most research focused on improving the performance of regression models while neglecting the correlation between the implicit information extracted from EEG features across various frequency bands with limb kinematics. Current work aims to identify key channels that capture information related to various motion execution movements from different frequency bands and reconstruct three-dimensional motion trajectories based on EEG features.
Methods: We propose an interpretable motion trajectory regression framework that extracts bandpower features from different frequency bands and concatenates them into multi-band fusion features. The extreme gradient boosting regression model with Bayesian optimization and Shapley additive explanation methods are introduced to provide further explanation.
Results: The experimental results demonstrate that the proposed method achieves a mean Pearson correlation coefficient (PCC) value of 0.452, outperforming traditional regression models.
Conclusion: Our findings reveal that the contralateral side contributes the most to motion trajectory regression than the ipsilateral side which improves the clarity and interpretability of the motion trajectory regression model. Specifically, the feature from channel C5 in the Mu band is crucial for the movement of the right hand, while the feature from channel C3 in the Beta band plays a vital role.
Significance: This work provides a novel perspective on the comprehensive study of movement disorders.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.