ADMET工具在数字时代:应用和限制。

Q1 Pharmacology, Toxicology and Pharmaceutics
Advances in pharmacology Pub Date : 2025-01-01 Epub Date: 2025-02-12 DOI:10.1016/bs.apha.2025.01.004
Sonali S Shinde, Prabhanjan S Giram, Pravin S Wakte, Sachin S Bhusari
{"title":"ADMET工具在数字时代:应用和限制。","authors":"Sonali S Shinde, Prabhanjan S Giram, Pravin S Wakte, Sachin S Bhusari","doi":"10.1016/bs.apha.2025.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>The high rate of medication failures poses a significant challenge for the pharmaceutical sector. Selecting appropriate data from experiments for ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and applying it effectively in the context of physiological characteristics is difficult. Currently, ADMET prediction is conducted early in the drug design process to filter out molecules with weak pharmacokinetic properties. Numerous ADMET models for prediction have been designed using computational methods. Verified ADMET datasets have been determined through experiments, utilizing key classifying factors and descriptors to develop in silico approaches. This chapter discusses the relevance of ADMET evaluation in drug design, methodologies for model creation, available ADMET predictive tools, and the limitations of these predicted models.</p>","PeriodicalId":7366,"journal":{"name":"Advances in pharmacology","volume":"103 ","pages":"65-80"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADMET tools in the digital era: Applications and limitations.\",\"authors\":\"Sonali S Shinde, Prabhanjan S Giram, Pravin S Wakte, Sachin S Bhusari\",\"doi\":\"10.1016/bs.apha.2025.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high rate of medication failures poses a significant challenge for the pharmaceutical sector. Selecting appropriate data from experiments for ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and applying it effectively in the context of physiological characteristics is difficult. Currently, ADMET prediction is conducted early in the drug design process to filter out molecules with weak pharmacokinetic properties. Numerous ADMET models for prediction have been designed using computational methods. Verified ADMET datasets have been determined through experiments, utilizing key classifying factors and descriptors to develop in silico approaches. This chapter discusses the relevance of ADMET evaluation in drug design, methodologies for model creation, available ADMET predictive tools, and the limitations of these predicted models.</p>\",\"PeriodicalId\":7366,\"journal\":{\"name\":\"Advances in pharmacology\",\"volume\":\"103 \",\"pages\":\"65-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.apha.2025.01.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.apha.2025.01.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

药物治疗的高失败率给制药行业带来了巨大挑战。从实验中选择适当的数据进行 ADMET(吸收、分布、代谢、排泄和毒性)预测,并将其有效地应用于生理特点的研究是非常困难的。目前,ADMET 预测是在药物设计过程的早期进行的,目的是筛选出药代动力学特性较弱的分子。利用计算方法设计了许多 ADMET 预测模型。通过实验确定了经过验证的 ADMET 数据集,利用关键分类因子和描述因子开发了硅学方法。本章将讨论 ADMET 评估在药物设计中的相关性、创建模型的方法、可用的 ADMET 预测工具以及这些预测模型的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADMET tools in the digital era: Applications and limitations.

The high rate of medication failures poses a significant challenge for the pharmaceutical sector. Selecting appropriate data from experiments for ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and applying it effectively in the context of physiological characteristics is difficult. Currently, ADMET prediction is conducted early in the drug design process to filter out molecules with weak pharmacokinetic properties. Numerous ADMET models for prediction have been designed using computational methods. Verified ADMET datasets have been determined through experiments, utilizing key classifying factors and descriptors to develop in silico approaches. This chapter discusses the relevance of ADMET evaluation in drug design, methodologies for model creation, available ADMET predictive tools, and the limitations of these predicted models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in pharmacology
Advances in pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
9.10
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信