Chander K Negi, Darshak Gadara, Lola Bajard, Zdeněk Spáčil, Ludek Blaha
{"title":"2-乙基己基二苯基磷酸影响人肾上腺(H295R)细胞的甾体生成和脂质组谱","authors":"Chander K Negi, Darshak Gadara, Lola Bajard, Zdeněk Spáčil, Ludek Blaha","doi":"10.1021/acs.chemrestox.5c00030","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-increasing use of chemicals and the rising incidence of adverse reproductive effects in the modern environment have become an emerging concern. Several studies have shown that environmental contaminants, such as organophosphate flame retardants (OPFRs), negatively impact reproductive health. To evaluate the potential endocrine-related adverse reproductive effects of widely used and priority-listed compound 2-Ethylhexyl diphenyl phosphate (EHDPP), we characterized its effects on adrenal steroidogenesis in human adrenocortical (H295R) cells. The cells were exposed to EHDPP (1 and 5 μM) for 48 h, and the production of hormones, including progesterone, androstenedione, testosterone, estradiol, cortisol, and aldosterone, was measured. In addition, LC-MS/MS-based lipidomics analysis was done to quantify intracellular lipid profiles, and transcriptional assays were performed to examine the expression of genes related to corticosteroidogenesis, lipid metabolism, and mitochondrial dynamics. Our findings indicate that EHDPP disrupts hormone regulation in vitro, as evidenced by increased estradiol, cortisol, and aldosterone secretion. The expression of key corticosteroidogenic genes (CYP11B2, CYP21A1, 3β-HSD2, and 17β-HSD1) was upregulated significantly upon EHDPP exposure. Intracellular lipidomics revealed EHDPP-mediated disruption, including reduced total cholesterol ester, sphingolipids, and increased phospholipids, triglyceride species, and saturated-monounsaturated lipids subspecies. These alterations were accompanied by decreased ACAT2 and SCD1 gene expression. Moreover, a shift in mitochondrial dynamics was indicated by increased MF1 expression and decreased FIS1 expression. These data suggest that EHDPP disrupts adrenal steroidogenesis and lipid homeostasis, emphasizing its potential endocrine-disrupting effects.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-Ethylhexyl Diphenyl Phosphate Affects Steroidogenesis and Lipidome Profile in Human Adrenal (H295R) Cells.\",\"authors\":\"Chander K Negi, Darshak Gadara, Lola Bajard, Zdeněk Spáčil, Ludek Blaha\",\"doi\":\"10.1021/acs.chemrestox.5c00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ever-increasing use of chemicals and the rising incidence of adverse reproductive effects in the modern environment have become an emerging concern. Several studies have shown that environmental contaminants, such as organophosphate flame retardants (OPFRs), negatively impact reproductive health. To evaluate the potential endocrine-related adverse reproductive effects of widely used and priority-listed compound 2-Ethylhexyl diphenyl phosphate (EHDPP), we characterized its effects on adrenal steroidogenesis in human adrenocortical (H295R) cells. The cells were exposed to EHDPP (1 and 5 μM) for 48 h, and the production of hormones, including progesterone, androstenedione, testosterone, estradiol, cortisol, and aldosterone, was measured. In addition, LC-MS/MS-based lipidomics analysis was done to quantify intracellular lipid profiles, and transcriptional assays were performed to examine the expression of genes related to corticosteroidogenesis, lipid metabolism, and mitochondrial dynamics. Our findings indicate that EHDPP disrupts hormone regulation in vitro, as evidenced by increased estradiol, cortisol, and aldosterone secretion. The expression of key corticosteroidogenic genes (CYP11B2, CYP21A1, 3β-HSD2, and 17β-HSD1) was upregulated significantly upon EHDPP exposure. Intracellular lipidomics revealed EHDPP-mediated disruption, including reduced total cholesterol ester, sphingolipids, and increased phospholipids, triglyceride species, and saturated-monounsaturated lipids subspecies. These alterations were accompanied by decreased ACAT2 and SCD1 gene expression. Moreover, a shift in mitochondrial dynamics was indicated by increased MF1 expression and decreased FIS1 expression. These data suggest that EHDPP disrupts adrenal steroidogenesis and lipid homeostasis, emphasizing its potential endocrine-disrupting effects.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrestox.5c00030\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.5c00030","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
2-Ethylhexyl Diphenyl Phosphate Affects Steroidogenesis and Lipidome Profile in Human Adrenal (H295R) Cells.
The ever-increasing use of chemicals and the rising incidence of adverse reproductive effects in the modern environment have become an emerging concern. Several studies have shown that environmental contaminants, such as organophosphate flame retardants (OPFRs), negatively impact reproductive health. To evaluate the potential endocrine-related adverse reproductive effects of widely used and priority-listed compound 2-Ethylhexyl diphenyl phosphate (EHDPP), we characterized its effects on adrenal steroidogenesis in human adrenocortical (H295R) cells. The cells were exposed to EHDPP (1 and 5 μM) for 48 h, and the production of hormones, including progesterone, androstenedione, testosterone, estradiol, cortisol, and aldosterone, was measured. In addition, LC-MS/MS-based lipidomics analysis was done to quantify intracellular lipid profiles, and transcriptional assays were performed to examine the expression of genes related to corticosteroidogenesis, lipid metabolism, and mitochondrial dynamics. Our findings indicate that EHDPP disrupts hormone regulation in vitro, as evidenced by increased estradiol, cortisol, and aldosterone secretion. The expression of key corticosteroidogenic genes (CYP11B2, CYP21A1, 3β-HSD2, and 17β-HSD1) was upregulated significantly upon EHDPP exposure. Intracellular lipidomics revealed EHDPP-mediated disruption, including reduced total cholesterol ester, sphingolipids, and increased phospholipids, triglyceride species, and saturated-monounsaturated lipids subspecies. These alterations were accompanied by decreased ACAT2 and SCD1 gene expression. Moreover, a shift in mitochondrial dynamics was indicated by increased MF1 expression and decreased FIS1 expression. These data suggest that EHDPP disrupts adrenal steroidogenesis and lipid homeostasis, emphasizing its potential endocrine-disrupting effects.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.