{"title":"钛酸锶中近乎完美的声子热传导和扩展边位错","authors":"Wataru Sekimoto, Tomofumi Hara, Susumu Fujii, Masato Yoshiya","doi":"10.1111/jace.20438","DOIUrl":null,"url":null,"abstract":"<p>Modifications of phonon thermal conduction by perfect and extended edge dislocations in SrTiO<sub>3</sub> have been numerically analyzed. SrTiO<sub>3</sub> has a unique feature that Ti and O atoms, which form optical phonon modes at intermediate and high frequencies, dominates thermal conduction rather than Sr atoms. Dislocations reduce thermal conductivity through introducing spatial inhomogeneity, that is, nonuniform Ti–O bond strains in the network of TiO<sub>6</sub> octahedra. Due to the different spatial distributions of Ti–O bond strains, an extended dislocation with partial dislocations and stacking faults has a different mechanism of phonon scattering compared with perfect dislocations. The dislocations scatter phonons, most significantly for acoustic phonons, almost eliminating their contributions to thermal conduction. Consequently, optical phonons of Ti and O atoms at intermediate frequencies dominate thermal conduction when dislocations are present in SrTiO<sub>3</sub>.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phonon thermal conduction near perfect and extended edge dislocations in strontium titanate\",\"authors\":\"Wataru Sekimoto, Tomofumi Hara, Susumu Fujii, Masato Yoshiya\",\"doi\":\"10.1111/jace.20438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modifications of phonon thermal conduction by perfect and extended edge dislocations in SrTiO<sub>3</sub> have been numerically analyzed. SrTiO<sub>3</sub> has a unique feature that Ti and O atoms, which form optical phonon modes at intermediate and high frequencies, dominates thermal conduction rather than Sr atoms. Dislocations reduce thermal conductivity through introducing spatial inhomogeneity, that is, nonuniform Ti–O bond strains in the network of TiO<sub>6</sub> octahedra. Due to the different spatial distributions of Ti–O bond strains, an extended dislocation with partial dislocations and stacking faults has a different mechanism of phonon scattering compared with perfect dislocations. The dislocations scatter phonons, most significantly for acoustic phonons, almost eliminating their contributions to thermal conduction. Consequently, optical phonons of Ti and O atoms at intermediate frequencies dominate thermal conduction when dislocations are present in SrTiO<sub>3</sub>.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20438\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20438","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Phonon thermal conduction near perfect and extended edge dislocations in strontium titanate
Modifications of phonon thermal conduction by perfect and extended edge dislocations in SrTiO3 have been numerically analyzed. SrTiO3 has a unique feature that Ti and O atoms, which form optical phonon modes at intermediate and high frequencies, dominates thermal conduction rather than Sr atoms. Dislocations reduce thermal conductivity through introducing spatial inhomogeneity, that is, nonuniform Ti–O bond strains in the network of TiO6 octahedra. Due to the different spatial distributions of Ti–O bond strains, an extended dislocation with partial dislocations and stacking faults has a different mechanism of phonon scattering compared with perfect dislocations. The dislocations scatter phonons, most significantly for acoustic phonons, almost eliminating their contributions to thermal conduction. Consequently, optical phonons of Ti and O atoms at intermediate frequencies dominate thermal conduction when dislocations are present in SrTiO3.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.