{"title":"一种新型的果胶、马铃薯淀粉和邻苯三酚活性生物聚合物包衣:对番茄采后品质的影响","authors":"Aparna Ramadoss, Venkata Giridhar Poosarla, Shaik Sadiya, Nagaveni Shivshetty","doi":"10.1111/1750-3841.70179","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Recently, there has been an increasing interest in biodegradable films for extending food's shelf life. This study developed pectin–potato starch-based films incorporating varying pyrogallol concentrations and evaluated shelf life their physical, antioxidant, mechanical, optical, antibacterial, structural, biodegradation, and shelf-life properties. Among the tested films (F1, pectin; F2, pectin + potato starch; F3, pectin + potato starch + 0.5%pyrogallol; and F4, pectin + potato starch + 1%pyrogallol), F4 exhibited superior antibacterial activity against <i>Staphylococcus aureus</i> (42 mm), <i>Klebsiella pneumoniae</i> (20.5 mm), and <i>Escherichia coli</i> (25.5 mm), antioxidant activity (AA) (95% (diphenylpicrylhydrazyl), 76% (metal chelating activity), and 87% (hydroxyl radical scavenging assay)), mechanical, and soil biodegradation. Fourier transform infrared spectroscopy and field emission scanning electron microscopy confirmed biocompatibility, whereas differential scanning calorimetry studies showed thermal stability. Shelf-life studies on tomatoes at 30°C demonstrated that F4 film coating extended shelf life to 21 days by reducing weight loss (14.5%), total phenolic content (25 mg/100 g), AA (53.5%), firmness (46 N), and titratable acidity (0.38%) while maintaining the total soluble solids, pH, lycopene content, color, and microbial inhibition. This study introduces a novel active biodegradable film with enhanced antimicrobial, mechanical, and antioxidant properties for sustainable food packaging applications.</p>\n </section>\n \n <section>\n \n <h3> Practical Application</h3>\n \n <p>This study introduces an eco-friendly biopolymer coating formulated to extend the shelf life of food by reducing spoilage and maintaining quality during storage. The coating is cost-effective, easy to produce, and can be used for industrial-scale applications by giving a sustainable alternative to synthetic packaging. It can provide consumers with long-lasting produce by maintaining freshness, reducing food waste, and promoting environmentally conscious food preservation practices.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70179","citationCount":"0","resultStr":"{\"title\":\"A novel active biopolymer coating of pectin, potato starch, and pyrogallol: Impact on postharvest quality of tomato (Solanum lycopersicum L.)\",\"authors\":\"Aparna Ramadoss, Venkata Giridhar Poosarla, Shaik Sadiya, Nagaveni Shivshetty\",\"doi\":\"10.1111/1750-3841.70179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n \\n <p>Recently, there has been an increasing interest in biodegradable films for extending food's shelf life. This study developed pectin–potato starch-based films incorporating varying pyrogallol concentrations and evaluated shelf life their physical, antioxidant, mechanical, optical, antibacterial, structural, biodegradation, and shelf-life properties. Among the tested films (F1, pectin; F2, pectin + potato starch; F3, pectin + potato starch + 0.5%pyrogallol; and F4, pectin + potato starch + 1%pyrogallol), F4 exhibited superior antibacterial activity against <i>Staphylococcus aureus</i> (42 mm), <i>Klebsiella pneumoniae</i> (20.5 mm), and <i>Escherichia coli</i> (25.5 mm), antioxidant activity (AA) (95% (diphenylpicrylhydrazyl), 76% (metal chelating activity), and 87% (hydroxyl radical scavenging assay)), mechanical, and soil biodegradation. Fourier transform infrared spectroscopy and field emission scanning electron microscopy confirmed biocompatibility, whereas differential scanning calorimetry studies showed thermal stability. Shelf-life studies on tomatoes at 30°C demonstrated that F4 film coating extended shelf life to 21 days by reducing weight loss (14.5%), total phenolic content (25 mg/100 g), AA (53.5%), firmness (46 N), and titratable acidity (0.38%) while maintaining the total soluble solids, pH, lycopene content, color, and microbial inhibition. This study introduces a novel active biodegradable film with enhanced antimicrobial, mechanical, and antioxidant properties for sustainable food packaging applications.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Practical Application</h3>\\n \\n <p>This study introduces an eco-friendly biopolymer coating formulated to extend the shelf life of food by reducing spoilage and maintaining quality during storage. The coating is cost-effective, easy to produce, and can be used for industrial-scale applications by giving a sustainable alternative to synthetic packaging. It can provide consumers with long-lasting produce by maintaining freshness, reducing food waste, and promoting environmentally conscious food preservation practices.</p>\\n </section>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70179\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70179","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A novel active biopolymer coating of pectin, potato starch, and pyrogallol: Impact on postharvest quality of tomato (Solanum lycopersicum L.)
Recently, there has been an increasing interest in biodegradable films for extending food's shelf life. This study developed pectin–potato starch-based films incorporating varying pyrogallol concentrations and evaluated shelf life their physical, antioxidant, mechanical, optical, antibacterial, structural, biodegradation, and shelf-life properties. Among the tested films (F1, pectin; F2, pectin + potato starch; F3, pectin + potato starch + 0.5%pyrogallol; and F4, pectin + potato starch + 1%pyrogallol), F4 exhibited superior antibacterial activity against Staphylococcus aureus (42 mm), Klebsiella pneumoniae (20.5 mm), and Escherichia coli (25.5 mm), antioxidant activity (AA) (95% (diphenylpicrylhydrazyl), 76% (metal chelating activity), and 87% (hydroxyl radical scavenging assay)), mechanical, and soil biodegradation. Fourier transform infrared spectroscopy and field emission scanning electron microscopy confirmed biocompatibility, whereas differential scanning calorimetry studies showed thermal stability. Shelf-life studies on tomatoes at 30°C demonstrated that F4 film coating extended shelf life to 21 days by reducing weight loss (14.5%), total phenolic content (25 mg/100 g), AA (53.5%), firmness (46 N), and titratable acidity (0.38%) while maintaining the total soluble solids, pH, lycopene content, color, and microbial inhibition. This study introduces a novel active biodegradable film with enhanced antimicrobial, mechanical, and antioxidant properties for sustainable food packaging applications.
Practical Application
This study introduces an eco-friendly biopolymer coating formulated to extend the shelf life of food by reducing spoilage and maintaining quality during storage. The coating is cost-effective, easy to produce, and can be used for industrial-scale applications by giving a sustainable alternative to synthetic packaging. It can provide consumers with long-lasting produce by maintaining freshness, reducing food waste, and promoting environmentally conscious food preservation practices.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.