Weihui Peng, Zhangliu Jin, Jinjin Liu, Qirui Zhang, Wei Liu
{"title":"橘皮素调节肥胖患者粪便菌群移植后肠道菌群代谢和巨噬细胞免疫","authors":"Weihui Peng, Zhangliu Jin, Jinjin Liu, Qirui Zhang, Wei Liu","doi":"10.1111/1750-3841.70171","DOIUrl":null,"url":null,"abstract":"<p>Obesity, characterized by excessive body fat, is a leading preventable cause of death globally and represents one of the most critical public health challenges of the 21st century. This study aimed to investigate the action of tangeretin on gut microbiota metabolism and inflammation in high-fat diet (HFD)-induced obese mice. A model of obesity was established using 6-week-old male C57BL/6J mice fed with HFD, which were then used for the treatment with tangeretin (20 mg/kg/mice/day) or antibiotic (Abx). The results showed that the tangeretin intervention alleviated fat deposition and disorder of cellular structural integrity in the model group. The obese mice showed a significant increase in the levels of lipid (glycerol, triglyceride, and total cholesterol), inflammatory factors (IL-6 and TNF-α), and F4/80 expression in both serum and adipose tissues. Following tangeretin treatment, the levels of lipid, inflammatory factors, and the ratio of F4/80 + CD206 + macrophages were decreased in both serum and adipose tissue. 16S rRNA sequencing and LC-MS/MS analysis revealed that tangeretin decreased obesity in HFD-induced obese mice by interacting with gut microbiota, particularly influencing <i>Parabacteroides</i>, <i>Blautia</i>, and <i>Parasutterella</i>, and amino acids such as threonine, isoleucine, leucine, phenylalanine, arginine, glutamine, L-tryptophan, and tyrosine. Abx-mediated clearance of gut microbiota blocked the HFD-induced obesity and abrogated the therapeutic effects of tangeretin in obese mice. Fecal microbiota transplantation (FMT) proved that clearing gut microbiota with Abx blocked the beneficial effects of FMT<sup>HFD+Tangeretin</sup> intervention. These findings suggested that tangeretin improved HFD-induced obesity by regulating lipid metabolism and modulating F4/80 macrophage activation via gut microbiota.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tangeretin modulates gut microbiota metabolism and macrophage immunity following fecal microbiota transplantation in obesity\",\"authors\":\"Weihui Peng, Zhangliu Jin, Jinjin Liu, Qirui Zhang, Wei Liu\",\"doi\":\"10.1111/1750-3841.70171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Obesity, characterized by excessive body fat, is a leading preventable cause of death globally and represents one of the most critical public health challenges of the 21st century. This study aimed to investigate the action of tangeretin on gut microbiota metabolism and inflammation in high-fat diet (HFD)-induced obese mice. A model of obesity was established using 6-week-old male C57BL/6J mice fed with HFD, which were then used for the treatment with tangeretin (20 mg/kg/mice/day) or antibiotic (Abx). The results showed that the tangeretin intervention alleviated fat deposition and disorder of cellular structural integrity in the model group. The obese mice showed a significant increase in the levels of lipid (glycerol, triglyceride, and total cholesterol), inflammatory factors (IL-6 and TNF-α), and F4/80 expression in both serum and adipose tissues. Following tangeretin treatment, the levels of lipid, inflammatory factors, and the ratio of F4/80 + CD206 + macrophages were decreased in both serum and adipose tissue. 16S rRNA sequencing and LC-MS/MS analysis revealed that tangeretin decreased obesity in HFD-induced obese mice by interacting with gut microbiota, particularly influencing <i>Parabacteroides</i>, <i>Blautia</i>, and <i>Parasutterella</i>, and amino acids such as threonine, isoleucine, leucine, phenylalanine, arginine, glutamine, L-tryptophan, and tyrosine. Abx-mediated clearance of gut microbiota blocked the HFD-induced obesity and abrogated the therapeutic effects of tangeretin in obese mice. Fecal microbiota transplantation (FMT) proved that clearing gut microbiota with Abx blocked the beneficial effects of FMT<sup>HFD+Tangeretin</sup> intervention. These findings suggested that tangeretin improved HFD-induced obesity by regulating lipid metabolism and modulating F4/80 macrophage activation via gut microbiota.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70171\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70171","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Tangeretin modulates gut microbiota metabolism and macrophage immunity following fecal microbiota transplantation in obesity
Obesity, characterized by excessive body fat, is a leading preventable cause of death globally and represents one of the most critical public health challenges of the 21st century. This study aimed to investigate the action of tangeretin on gut microbiota metabolism and inflammation in high-fat diet (HFD)-induced obese mice. A model of obesity was established using 6-week-old male C57BL/6J mice fed with HFD, which were then used for the treatment with tangeretin (20 mg/kg/mice/day) or antibiotic (Abx). The results showed that the tangeretin intervention alleviated fat deposition and disorder of cellular structural integrity in the model group. The obese mice showed a significant increase in the levels of lipid (glycerol, triglyceride, and total cholesterol), inflammatory factors (IL-6 and TNF-α), and F4/80 expression in both serum and adipose tissues. Following tangeretin treatment, the levels of lipid, inflammatory factors, and the ratio of F4/80 + CD206 + macrophages were decreased in both serum and adipose tissue. 16S rRNA sequencing and LC-MS/MS analysis revealed that tangeretin decreased obesity in HFD-induced obese mice by interacting with gut microbiota, particularly influencing Parabacteroides, Blautia, and Parasutterella, and amino acids such as threonine, isoleucine, leucine, phenylalanine, arginine, glutamine, L-tryptophan, and tyrosine. Abx-mediated clearance of gut microbiota blocked the HFD-induced obesity and abrogated the therapeutic effects of tangeretin in obese mice. Fecal microbiota transplantation (FMT) proved that clearing gut microbiota with Abx blocked the beneficial effects of FMTHFD+Tangeretin intervention. These findings suggested that tangeretin improved HFD-induced obesity by regulating lipid metabolism and modulating F4/80 macrophage activation via gut microbiota.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.