模态特征补充增强脑肿瘤分割

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kaiyan Zhu, Weiye Cao, Jianhao Xu, Tong Liu, Yue Liu, Weibo Song
{"title":"模态特征补充增强脑肿瘤分割","authors":"Kaiyan Zhu,&nbsp;Weiye Cao,&nbsp;Jianhao Xu,&nbsp;Tong Liu,&nbsp;Yue Liu,&nbsp;Weibo Song","doi":"10.1002/ima.70079","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For patients with brain tumors, effectively utilizing the complementary information between multimodal medical images is crucial for accurate lesion segmentation. However, effectively utilizing the complementary features across different modalities remains a challenging task. To address these challenges, we propose a modal feature supplement network (MFSNet), which extracts modality features simultaneously using both a main and an auxiliary network. During this process, the auxiliary network supplements the modality features of the main network, enabling accurate brain tumor segmentation. We also design a modal feature enhancement module (MFEM), a cross-layer feature fusion module (CFFM), and an edge feature supplement module (EFSM). MFEM enhances the network performance by fusing the modality features from the main and auxiliary networks. CFFM supplements additional contextual information by fusing features from adjacent encoding layers at different scales, which are then passed into the corresponding decoding layers. This aids the network in preserving more details during upsampling. EFSM improves network performance by using deformable convolution to extract challenging boundary lesion features, which are then used to supplement the final output of the decoding layer. We evaluated MFSNet on the BraTS2018 and BraTS2021 datasets. The Dice scores for the whole tumor, tumor core, and enhancing tumor regions were 90.86%, 90.59%, 84.72%, and 92.28%, 92.47%, 86.07%, respectively. This validates the accuracy of MFSNet in brain tumor segmentation, demonstrating its superiority over other networks of similar type.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Feature Supplementation Enhances Brain Tumor Segmentation\",\"authors\":\"Kaiyan Zhu,&nbsp;Weiye Cao,&nbsp;Jianhao Xu,&nbsp;Tong Liu,&nbsp;Yue Liu,&nbsp;Weibo Song\",\"doi\":\"10.1002/ima.70079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For patients with brain tumors, effectively utilizing the complementary information between multimodal medical images is crucial for accurate lesion segmentation. However, effectively utilizing the complementary features across different modalities remains a challenging task. To address these challenges, we propose a modal feature supplement network (MFSNet), which extracts modality features simultaneously using both a main and an auxiliary network. During this process, the auxiliary network supplements the modality features of the main network, enabling accurate brain tumor segmentation. We also design a modal feature enhancement module (MFEM), a cross-layer feature fusion module (CFFM), and an edge feature supplement module (EFSM). MFEM enhances the network performance by fusing the modality features from the main and auxiliary networks. CFFM supplements additional contextual information by fusing features from adjacent encoding layers at different scales, which are then passed into the corresponding decoding layers. This aids the network in preserving more details during upsampling. EFSM improves network performance by using deformable convolution to extract challenging boundary lesion features, which are then used to supplement the final output of the decoding layer. We evaluated MFSNet on the BraTS2018 and BraTS2021 datasets. The Dice scores for the whole tumor, tumor core, and enhancing tumor regions were 90.86%, 90.59%, 84.72%, and 92.28%, 92.47%, 86.07%, respectively. This validates the accuracy of MFSNet in brain tumor segmentation, demonstrating its superiority over other networks of similar type.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70079\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70079","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于脑肿瘤患者而言,有效利用多模态医学图像之间的互补信息是准确分割病灶的关键。然而,有效地利用不同模式的互补特征仍然是一项具有挑战性的任务。为了解决这些问题,我们提出了一种模态特征补充网络(MFSNet),它使用主网络和辅助网络同时提取模态特征。在此过程中,辅助网络补充了主网络的模态特征,实现了准确的脑肿瘤分割。设计了模态特征增强模块(MFEM)、跨层特征融合模块(CFFM)和边缘特征补充模块(EFSM)。MFEM通过融合主网和辅助网的模态特征来提高网络性能。CFFM通过融合来自相邻编码层的不同尺度的特征来补充额外的上下文信息,然后将这些特征传递到相应的解码层。这有助于网络在上采样期间保留更多的细节。EFSM通过使用可变形卷积提取具有挑战性的边界损伤特征来提高网络性能,然后将这些特征用于补充解码层的最终输出。我们在BraTS2018和BraTS2021数据集上评估了MFSNet。全肿瘤、肿瘤核心和肿瘤增强区的Dice评分分别为90.86%、90.59%、84.72%和92.28%、92.47%、86.07%。这验证了MFSNet在脑肿瘤分割中的准确性,显示了其相对于其他同类网络的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modal Feature Supplementation Enhances Brain Tumor Segmentation

For patients with brain tumors, effectively utilizing the complementary information between multimodal medical images is crucial for accurate lesion segmentation. However, effectively utilizing the complementary features across different modalities remains a challenging task. To address these challenges, we propose a modal feature supplement network (MFSNet), which extracts modality features simultaneously using both a main and an auxiliary network. During this process, the auxiliary network supplements the modality features of the main network, enabling accurate brain tumor segmentation. We also design a modal feature enhancement module (MFEM), a cross-layer feature fusion module (CFFM), and an edge feature supplement module (EFSM). MFEM enhances the network performance by fusing the modality features from the main and auxiliary networks. CFFM supplements additional contextual information by fusing features from adjacent encoding layers at different scales, which are then passed into the corresponding decoding layers. This aids the network in preserving more details during upsampling. EFSM improves network performance by using deformable convolution to extract challenging boundary lesion features, which are then used to supplement the final output of the decoding layer. We evaluated MFSNet on the BraTS2018 and BraTS2021 datasets. The Dice scores for the whole tumor, tumor core, and enhancing tumor regions were 90.86%, 90.59%, 84.72%, and 92.28%, 92.47%, 86.07%, respectively. This validates the accuracy of MFSNet in brain tumor segmentation, demonstrating its superiority over other networks of similar type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信