Danish Bashir, P. M. Anilkumar, S. Scheffler, A. Haldar, B. N. Rao, R. Rolfes
{"title":"热诱导非对称复合材料层合板双稳态结构的动态行为及其应用综述","authors":"Danish Bashir, P. M. Anilkumar, S. Scheffler, A. Haldar, B. N. Rao, R. Rolfes","doi":"10.1007/s11831-024-10192-6","DOIUrl":null,"url":null,"abstract":"<div><p>Multistable structures are extensively researched due to their adaptability across various operational conditions. A basic class of these multistable structures can be bistable laminates that exhibit two stable configurations separated by an energy barrier. These structures require external energy input to change between stable states through a non-linear snap-through process. This property of multistability and associated non-linear characteristics make their research even more engaging and, at the same time, challenging. Novel modeling and design techniques are required for the efficient static and dynamic analysis of these structures. These components have a wide range of applications in fields such as microelectronics, medical devices, deployable structures, reconfigurable elements, and energy absorption and harvesting due to their ability to store and release energy during the snap-through shape transition. Although the topic of multistable structure is broad and interesting to engineers, this review paper provides a comprehensive overview of the current state of knowledge on the dynamic characteristics of multistable laminates, assessing their potential for morphing and energy harvesting applications. The paper begins with an introduction to bistability, explaining its basic characteristics, and then proceeds to review the various computational models developed to understand the highly non-linear dynamic characteristics of bistable laminates. These models include analytical, semi-analytical, numerical studies, and experimental validations with key highlights on recent developments in this domain. The paper then focuses on the potential of multistable laminates for energy harvesting applications, particularly from ambient vibrations. The paper highlights the importance of energy harvesting for powering small-scale electronic devices and the suitability of multistable laminates as ideal candidates for energy harvesters. Overall, this review paper provides a valuable resource for researchers and engineers working in bistable laminates and energy harvesting.\n</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 3","pages":"1635 - 1677"},"PeriodicalIF":9.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of the Dynamic Behavior of Thermally Induced Bistable Configurations of Unsymmetrical Composite Laminates and their Applications\",\"authors\":\"Danish Bashir, P. M. Anilkumar, S. Scheffler, A. Haldar, B. N. Rao, R. Rolfes\",\"doi\":\"10.1007/s11831-024-10192-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multistable structures are extensively researched due to their adaptability across various operational conditions. A basic class of these multistable structures can be bistable laminates that exhibit two stable configurations separated by an energy barrier. These structures require external energy input to change between stable states through a non-linear snap-through process. This property of multistability and associated non-linear characteristics make their research even more engaging and, at the same time, challenging. Novel modeling and design techniques are required for the efficient static and dynamic analysis of these structures. These components have a wide range of applications in fields such as microelectronics, medical devices, deployable structures, reconfigurable elements, and energy absorption and harvesting due to their ability to store and release energy during the snap-through shape transition. Although the topic of multistable structure is broad and interesting to engineers, this review paper provides a comprehensive overview of the current state of knowledge on the dynamic characteristics of multistable laminates, assessing their potential for morphing and energy harvesting applications. The paper begins with an introduction to bistability, explaining its basic characteristics, and then proceeds to review the various computational models developed to understand the highly non-linear dynamic characteristics of bistable laminates. These models include analytical, semi-analytical, numerical studies, and experimental validations with key highlights on recent developments in this domain. The paper then focuses on the potential of multistable laminates for energy harvesting applications, particularly from ambient vibrations. The paper highlights the importance of energy harvesting for powering small-scale electronic devices and the suitability of multistable laminates as ideal candidates for energy harvesters. Overall, this review paper provides a valuable resource for researchers and engineers working in bistable laminates and energy harvesting.\\n</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"32 3\",\"pages\":\"1635 - 1677\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-024-10192-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10192-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Review of the Dynamic Behavior of Thermally Induced Bistable Configurations of Unsymmetrical Composite Laminates and their Applications
Multistable structures are extensively researched due to their adaptability across various operational conditions. A basic class of these multistable structures can be bistable laminates that exhibit two stable configurations separated by an energy barrier. These structures require external energy input to change between stable states through a non-linear snap-through process. This property of multistability and associated non-linear characteristics make their research even more engaging and, at the same time, challenging. Novel modeling and design techniques are required for the efficient static and dynamic analysis of these structures. These components have a wide range of applications in fields such as microelectronics, medical devices, deployable structures, reconfigurable elements, and energy absorption and harvesting due to their ability to store and release energy during the snap-through shape transition. Although the topic of multistable structure is broad and interesting to engineers, this review paper provides a comprehensive overview of the current state of knowledge on the dynamic characteristics of multistable laminates, assessing their potential for morphing and energy harvesting applications. The paper begins with an introduction to bistability, explaining its basic characteristics, and then proceeds to review the various computational models developed to understand the highly non-linear dynamic characteristics of bistable laminates. These models include analytical, semi-analytical, numerical studies, and experimental validations with key highlights on recent developments in this domain. The paper then focuses on the potential of multistable laminates for energy harvesting applications, particularly from ambient vibrations. The paper highlights the importance of energy harvesting for powering small-scale electronic devices and the suitability of multistable laminates as ideal candidates for energy harvesters. Overall, this review paper provides a valuable resource for researchers and engineers working in bistable laminates and energy harvesting.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.