基于q-Legendre的Gould-Hopper多项式和q-运算方法

Q2 Mathematics
Fadel Mohammed, William Ramírez, Clemente Cesarano, Stiven Díaz
{"title":"基于q-Legendre的Gould-Hopper多项式和q-运算方法","authors":"Fadel Mohammed,&nbsp;William Ramírez,&nbsp;Clemente Cesarano,&nbsp;Stiven Díaz","doi":"10.1007/s11565-025-00587-z","DOIUrl":null,"url":null,"abstract":"<div><p>The generalization of the monomiality principle for <i>q</i>-special polynomials has just been explained and demonstrated. This extension is used to study the monomiality features of the number of <i>q</i>-special polynomials, such as <i>q</i>-Appell polynomials, <i>q</i>-Gould–Hopper polynomials, two variables <i>q</i>-Hermite, <i>q</i>-Laguerre and <i>q</i>-Legendre polynomials. Additionally, several kinds of hybrid <i>q</i>-special polynomials and their monomiality features are studied, such as two-variable <i>q</i>-Laguerre-Appell polynomials, two-variable based <i>q</i>-Hermite-Appell polynomials and <i>q</i>-Gould–Hopper–Appell polynomials. This study seeks to generate the <i>q</i>-Legendre–Gould–Hopper polynomials and then describe their attributes by extending the idea of monomiality for <i>q</i>-polynomials. Furthermore, we propose operational representations, expansion formulae and new families of these polynomials with the aid of <i>q</i>-operational methods and extension for monomiality principle of <i>q</i>-polynomials.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-025-00587-z.pdf","citationCount":"0","resultStr":"{\"title\":\"q-Legendre based Gould–Hopper polynomials and q-operational methods\",\"authors\":\"Fadel Mohammed,&nbsp;William Ramírez,&nbsp;Clemente Cesarano,&nbsp;Stiven Díaz\",\"doi\":\"10.1007/s11565-025-00587-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The generalization of the monomiality principle for <i>q</i>-special polynomials has just been explained and demonstrated. This extension is used to study the monomiality features of the number of <i>q</i>-special polynomials, such as <i>q</i>-Appell polynomials, <i>q</i>-Gould–Hopper polynomials, two variables <i>q</i>-Hermite, <i>q</i>-Laguerre and <i>q</i>-Legendre polynomials. Additionally, several kinds of hybrid <i>q</i>-special polynomials and their monomiality features are studied, such as two-variable <i>q</i>-Laguerre-Appell polynomials, two-variable based <i>q</i>-Hermite-Appell polynomials and <i>q</i>-Gould–Hopper–Appell polynomials. This study seeks to generate the <i>q</i>-Legendre–Gould–Hopper polynomials and then describe their attributes by extending the idea of monomiality for <i>q</i>-polynomials. Furthermore, we propose operational representations, expansion formulae and new families of these polynomials with the aid of <i>q</i>-operational methods and extension for monomiality principle of <i>q</i>-polynomials.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11565-025-00587-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00587-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00587-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

对于q-特殊多项式的单项式原理的推广已经得到了解释和证明。该扩展用于研究q-特殊多项式,如q-Appell多项式,q-Gould-Hopper多项式,两个变量q-Hermite, q-Laguerre和q-Legendre多项式的数量的单项式特征。此外,还研究了两变量q-Laguerre-Appell多项式、基于两变量的q-Hermite-Appell多项式和q-Gould-Hopper-Appell多项式等几种混合q-special多项式及其单项式特征。本研究旨在生成q- legende - gould - hopper多项式,然后通过扩展q-多项式的单项式思想来描述它们的属性。在此基础上,利用q-运算方法和q-多项式单项式原理的推广,给出了这些多项式的运算表示、展开公式和新的族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-Legendre based Gould–Hopper polynomials and q-operational methods

The generalization of the monomiality principle for q-special polynomials has just been explained and demonstrated. This extension is used to study the monomiality features of the number of q-special polynomials, such as q-Appell polynomials, q-Gould–Hopper polynomials, two variables q-Hermite, q-Laguerre and q-Legendre polynomials. Additionally, several kinds of hybrid q-special polynomials and their monomiality features are studied, such as two-variable q-Laguerre-Appell polynomials, two-variable based q-Hermite-Appell polynomials and q-Gould–Hopper–Appell polynomials. This study seeks to generate the q-Legendre–Gould–Hopper polynomials and then describe their attributes by extending the idea of monomiality for q-polynomials. Furthermore, we propose operational representations, expansion formulae and new families of these polynomials with the aid of q-operational methods and extension for monomiality principle of q-polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信