交通预测的时空多元概率模型

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang An;Zhibin Li;Xiaoyu Li;Wei Liu;Xinghao Yang;Haoliang Sun;Meng Chen;Yu Zheng;Yongshun Gong
{"title":"交通预测的时空多元概率模型","authors":"Yang An;Zhibin Li;Xiaoyu Li;Wei Liu;Xinghao Yang;Haoliang Sun;Meng Chen;Yu Zheng;Yongshun Gong","doi":"10.1109/TKDE.2025.3539680","DOIUrl":null,"url":null,"abstract":"Traffic prediction is an essential task in intelligent transportation systems dealing with complex and dynamic spatio-temporal correlations. To date, most work is focused on point estimation models, which only output a single value w.r.t an attribute of traffic data at a time, falling short of depicting diverse situations and uncertainty in future. Besides, most methods are not flexible enough to handle real complex traffic scenarios, involving missing values and non-uniformly sampled data. The interactions among different attributes of traffic data are also rarely explored explicitly. In this paper, we focus on probabilistic estimation in traffic prediction tasks, proposing a spatio-temporal multivariate probabilistic predictive model to estimate the distributions of traffic data. Specifically, we devise a multivariate spatio-temporal fusion graph block to extract spatio-temporal correlations of multiple traffic attributes at different locations. A multi-graph fusion module is designed to capture time-varying spatial relationships. We estimate the joint distributions of missing traffic data using copulas. The proposed model can simultaneously perform traffic forecasting and interpolation tasks with non-uniformly sampled data. Our experiments on two real-world traffic datasets demonstrate the advantages of our model over the state-of-the-art<sup>1</sup>.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2986-3000"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-Temporal Multivariate Probabilistic Modeling for Traffic Prediction\",\"authors\":\"Yang An;Zhibin Li;Xiaoyu Li;Wei Liu;Xinghao Yang;Haoliang Sun;Meng Chen;Yu Zheng;Yongshun Gong\",\"doi\":\"10.1109/TKDE.2025.3539680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic prediction is an essential task in intelligent transportation systems dealing with complex and dynamic spatio-temporal correlations. To date, most work is focused on point estimation models, which only output a single value w.r.t an attribute of traffic data at a time, falling short of depicting diverse situations and uncertainty in future. Besides, most methods are not flexible enough to handle real complex traffic scenarios, involving missing values and non-uniformly sampled data. The interactions among different attributes of traffic data are also rarely explored explicitly. In this paper, we focus on probabilistic estimation in traffic prediction tasks, proposing a spatio-temporal multivariate probabilistic predictive model to estimate the distributions of traffic data. Specifically, we devise a multivariate spatio-temporal fusion graph block to extract spatio-temporal correlations of multiple traffic attributes at different locations. A multi-graph fusion module is designed to capture time-varying spatial relationships. We estimate the joint distributions of missing traffic data using copulas. The proposed model can simultaneously perform traffic forecasting and interpolation tasks with non-uniformly sampled data. Our experiments on two real-world traffic datasets demonstrate the advantages of our model over the state-of-the-art<sup>1</sup>.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 5\",\"pages\":\"2986-3000\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10887343/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10887343/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在智能交通系统中,交通预测是处理复杂、动态时空关联的一项重要任务。到目前为止,大多数工作都集中在点估计模型上,这种模型每次只输出一个值,而不是交通数据的一个属性,无法描述未来的各种情况和不确定性。此外,大多数方法不够灵活,无法处理真正复杂的流量场景,涉及缺失值和非均匀采样数据。交通数据的不同属性之间的相互作用也很少被明确地探讨。本文针对交通预测任务中的概率估计问题,提出了一种时空多元概率预测模型来估计交通数据的分布。具体来说,我们设计了一个多元时空融合图块来提取不同位置的多个交通属性的时空相关性。设计了一个多图融合模块来捕获时变空间关系。我们使用copula估计缺失交通数据的联合分布。该模型可以同时完成非均匀采样数据的流量预测和插值任务。我们在两个真实世界的交通数据集上的实验证明了我们的模型优于最先进的模型1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Multivariate Probabilistic Modeling for Traffic Prediction
Traffic prediction is an essential task in intelligent transportation systems dealing with complex and dynamic spatio-temporal correlations. To date, most work is focused on point estimation models, which only output a single value w.r.t an attribute of traffic data at a time, falling short of depicting diverse situations and uncertainty in future. Besides, most methods are not flexible enough to handle real complex traffic scenarios, involving missing values and non-uniformly sampled data. The interactions among different attributes of traffic data are also rarely explored explicitly. In this paper, we focus on probabilistic estimation in traffic prediction tasks, proposing a spatio-temporal multivariate probabilistic predictive model to estimate the distributions of traffic data. Specifically, we devise a multivariate spatio-temporal fusion graph block to extract spatio-temporal correlations of multiple traffic attributes at different locations. A multi-graph fusion module is designed to capture time-varying spatial relationships. We estimate the joint distributions of missing traffic data using copulas. The proposed model can simultaneously perform traffic forecasting and interpolation tasks with non-uniformly sampled data. Our experiments on two real-world traffic datasets demonstrate the advantages of our model over the state-of-the-art1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信