城市一般时空预测的通用预训练与提示框架

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuan Yuan;Jingtao Ding;Jie Feng;Depeng Jin;Yong Li
{"title":"城市一般时空预测的通用预训练与提示框架","authors":"Yuan Yuan;Jingtao Ding;Jie Feng;Depeng Jin;Yong Li","doi":"10.1109/TKDE.2025.3545948","DOIUrl":null,"url":null,"abstract":"Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergency response. Despite remarkable breakthroughs in pretrained natural language models that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging. Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by large language models, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios. Extensive experiments on more than 20 spatio-temporal scenarios, including grid-based data and graph-based data, demonstrate UniST’s efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2212-2225"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Universal Pre-Training and Prompting Framework for General Urban Spatio-Temporal Prediction\",\"authors\":\"Yuan Yuan;Jingtao Ding;Jie Feng;Depeng Jin;Yong Li\",\"doi\":\"10.1109/TKDE.2025.3545948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergency response. Despite remarkable breakthroughs in pretrained natural language models that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging. Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by large language models, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios. Extensive experiments on more than 20 spatio-temporal scenarios, including grid-based data and graph-based data, demonstrate UniST’s efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 5\",\"pages\":\"2212-2225\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10904327/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904327/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

城市时空预测对于交通管理、资源优化和应急响应等明智决策至关重要。尽管在预训练自然语言模型方面取得了显著的突破,使一个模型能够处理多种任务,但一个用于时空预测的通用解决方案仍然具有挑战性。现有的预测方法通常是针对特定的时空场景量身定制的,需要特定任务的模型设计和广泛的特定领域的训练数据。在这项研究中,我们引入了UniST模型,这是一个通用的模型,用于广泛场景下的一般城市时空预测。受大型语言模型的启发,UniST通过:(i)利用来自不同场景的多种时空数据,(ii)有效的预训练来捕获复杂的时空动态,(iii)知识引导提示来增强泛化能力。这些设计一起释放了为各种场景构建通用模型的潜力。在20多个时空场景下进行的广泛实验,包括基于网格的数据和基于图形的数据,证明了UniST在推进最先进性能方面的有效性,特别是在少射和零射预测方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Universal Pre-Training and Prompting Framework for General Urban Spatio-Temporal Prediction
Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergency response. Despite remarkable breakthroughs in pretrained natural language models that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging. Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by large language models, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios. Extensive experiments on more than 20 spatio-temporal scenarios, including grid-based data and graph-based data, demonstrate UniST’s efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信