将协作嵌入集成到推荐的大型语言模型中

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang Zhang;Fuli Feng;Jizhi Zhang;Keqin Bao;Qifan Wang;Xiangnan He
{"title":"将协作嵌入集成到推荐的大型语言模型中","authors":"Yang Zhang;Fuli Feng;Jizhi Zhang;Keqin Bao;Qifan Wang;Xiangnan He","doi":"10.1109/TKDE.2025.3540912","DOIUrl":null,"url":null,"abstract":"Leveraging Large Language Models as recommenders, referred to as LLMRec, is gaining traction and brings novel dynamics for modeling user preferences, particularly for cold-start users. However, existing LLMRec approaches primarily focus on text semantics and overlook the crucial aspect of incorporating collaborative information from user-item interactions, leading to potentially sub-optimal performance in warm-start scenarios. To ensure superior recommendations across both warm and cold scenarios, we introduce <italic>CoLLM</i>, an innovative LLMRec approach that explicitly integrates collaborative information for recommendations. CoLLM treats collaborative information as a distinct modality, directly encoding it from well-established traditional collaborative models, and then tunes a mapping module to align this collaborative information with the LLM's input text token space for recommendations. By externally integrating traditional models, CoLLM ensures effective collaborative information modeling without modifying the LLM itself, providing the flexibility to adopt diverse collaborative information modeling mechanisms. Extensive experimentation validates that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2329-2340"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoLLM: Integrating Collaborative Embeddings Into Large Language Models for Recommendation\",\"authors\":\"Yang Zhang;Fuli Feng;Jizhi Zhang;Keqin Bao;Qifan Wang;Xiangnan He\",\"doi\":\"10.1109/TKDE.2025.3540912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraging Large Language Models as recommenders, referred to as LLMRec, is gaining traction and brings novel dynamics for modeling user preferences, particularly for cold-start users. However, existing LLMRec approaches primarily focus on text semantics and overlook the crucial aspect of incorporating collaborative information from user-item interactions, leading to potentially sub-optimal performance in warm-start scenarios. To ensure superior recommendations across both warm and cold scenarios, we introduce <italic>CoLLM</i>, an innovative LLMRec approach that explicitly integrates collaborative information for recommendations. CoLLM treats collaborative information as a distinct modality, directly encoding it from well-established traditional collaborative models, and then tunes a mapping module to align this collaborative information with the LLM's input text token space for recommendations. By externally integrating traditional models, CoLLM ensures effective collaborative information modeling without modifying the LLM itself, providing the flexibility to adopt diverse collaborative information modeling mechanisms. Extensive experimentation validates that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 5\",\"pages\":\"2329-2340\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10882951/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10882951/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

利用大型语言模型作为推荐器(简称LLMRec)正在获得关注,并为用户偏好建模带来了新的动态,特别是对于新手用户。然而,现有的LLMRec方法主要关注文本语义,而忽略了整合来自用户-项目交互的协作信息的关键方面,导致在热启动场景中潜在的次优性能。为了确保在温暖和寒冷的场景中都有卓越的推荐,我们引入了CoLLM,这是一种创新的LLMRec方法,它明确地集成了推荐的协作信息。CoLLM将协作信息视为一种独特的模式,直接从已建立的传统协作模型中对其进行编码,然后调整映射模块,使该协作信息与LLM的输入文本标记空间保持一致,以进行推荐。通过外部集成传统模型,CoLLM在不修改LLM本身的情况下确保了有效的协同信息建模,为采用多种协同信息建模机制提供了灵活性。大量的实验验证了CoLLM熟练地将协作信息集成到llm中,从而提高了推荐性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoLLM: Integrating Collaborative Embeddings Into Large Language Models for Recommendation
Leveraging Large Language Models as recommenders, referred to as LLMRec, is gaining traction and brings novel dynamics for modeling user preferences, particularly for cold-start users. However, existing LLMRec approaches primarily focus on text semantics and overlook the crucial aspect of incorporating collaborative information from user-item interactions, leading to potentially sub-optimal performance in warm-start scenarios. To ensure superior recommendations across both warm and cold scenarios, we introduce CoLLM, an innovative LLMRec approach that explicitly integrates collaborative information for recommendations. CoLLM treats collaborative information as a distinct modality, directly encoding it from well-established traditional collaborative models, and then tunes a mapping module to align this collaborative information with the LLM's input text token space for recommendations. By externally integrating traditional models, CoLLM ensures effective collaborative information modeling without modifying the LLM itself, providing the flexibility to adopt diverse collaborative information modeling mechanisms. Extensive experimentation validates that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信