{"title":"城市轨道交通时空下混合蓄电系统优化规模与能量管理的多任务强化学习方法","authors":"Guannan Li;Siu Wing Or","doi":"10.1109/TIA.2025.3531327","DOIUrl":null,"url":null,"abstract":"Passenger flow fluctuation and delay-induced traffic regulation bring considerable challenges to cost-efficient regenerative braking energy utilization of hybrid electric storage systems (HESSs) in urban rail traction networks. This paper proposes a synergistic HESS sizing and energy management optimization framework based on multi-task reinforcement learning (MTRL) for enhancing the economic operation of HESSs under dynamic spatio-temporal urban rail traffic. The configuration-specific HESS control problem under various spatio-temporal traction load distributions is formulated as a multi-task Markov decision process (MTMDP), and an iterative sizing optimization approach considering daily service patterns is devised to minimize the HESS life cycle cost (LCC). Then, a dynamic traffic model composed of a Copula-based passenger flow generation method and a real-time timetable rescheduling algorithm incorporating a traction energy-passenger-time sensitivity matrix is developed to characterize multi-train traction load uncertainty. Furthermore, an MTRL algorithm based on a dueling double deep <inline-formula><tex-math>$Q$</tex-math></inline-formula> network with knowledge transfer is proposed to simultaneously learn a generalized control policy from annealing task-specific agents and operation environments for solving the MTMDP effectively. Comparative studies based on a real-world subway have validated the effectiveness of the proposed framework for LCC reduction of HESS operation under urban rail traffic.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 2","pages":"1876-1886"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Task Reinforcement Learning Approach for Optimal Sizing and Energy Management of Hybrid Electric Storage Systems Under Spatio-Temporal Urban Rail Traffic\",\"authors\":\"Guannan Li;Siu Wing Or\",\"doi\":\"10.1109/TIA.2025.3531327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passenger flow fluctuation and delay-induced traffic regulation bring considerable challenges to cost-efficient regenerative braking energy utilization of hybrid electric storage systems (HESSs) in urban rail traction networks. This paper proposes a synergistic HESS sizing and energy management optimization framework based on multi-task reinforcement learning (MTRL) for enhancing the economic operation of HESSs under dynamic spatio-temporal urban rail traffic. The configuration-specific HESS control problem under various spatio-temporal traction load distributions is formulated as a multi-task Markov decision process (MTMDP), and an iterative sizing optimization approach considering daily service patterns is devised to minimize the HESS life cycle cost (LCC). Then, a dynamic traffic model composed of a Copula-based passenger flow generation method and a real-time timetable rescheduling algorithm incorporating a traction energy-passenger-time sensitivity matrix is developed to characterize multi-train traction load uncertainty. Furthermore, an MTRL algorithm based on a dueling double deep <inline-formula><tex-math>$Q$</tex-math></inline-formula> network with knowledge transfer is proposed to simultaneously learn a generalized control policy from annealing task-specific agents and operation environments for solving the MTMDP effectively. Comparative studies based on a real-world subway have validated the effectiveness of the proposed framework for LCC reduction of HESS operation under urban rail traffic.\",\"PeriodicalId\":13337,\"journal\":{\"name\":\"IEEE Transactions on Industry Applications\",\"volume\":\"61 2\",\"pages\":\"1876-1886\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industry Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10845123/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10845123/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Multi-Task Reinforcement Learning Approach for Optimal Sizing and Energy Management of Hybrid Electric Storage Systems Under Spatio-Temporal Urban Rail Traffic
Passenger flow fluctuation and delay-induced traffic regulation bring considerable challenges to cost-efficient regenerative braking energy utilization of hybrid electric storage systems (HESSs) in urban rail traction networks. This paper proposes a synergistic HESS sizing and energy management optimization framework based on multi-task reinforcement learning (MTRL) for enhancing the economic operation of HESSs under dynamic spatio-temporal urban rail traffic. The configuration-specific HESS control problem under various spatio-temporal traction load distributions is formulated as a multi-task Markov decision process (MTMDP), and an iterative sizing optimization approach considering daily service patterns is devised to minimize the HESS life cycle cost (LCC). Then, a dynamic traffic model composed of a Copula-based passenger flow generation method and a real-time timetable rescheduling algorithm incorporating a traction energy-passenger-time sensitivity matrix is developed to characterize multi-train traction load uncertainty. Furthermore, an MTRL algorithm based on a dueling double deep $Q$ network with knowledge transfer is proposed to simultaneously learn a generalized control policy from annealing task-specific agents and operation environments for solving the MTMDP effectively. Comparative studies based on a real-world subway have validated the effectiveness of the proposed framework for LCC reduction of HESS operation under urban rail traffic.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.