Pietro Rando Mazzarino;Martina Capone;Elisa Guelpa;Lorenzo Bottaccioli;Vittorio Verda;Edoardo Patti
{"title":"不同工况下区域供热柔性方案比较的模块化联合仿真平台","authors":"Pietro Rando Mazzarino;Martina Capone;Elisa Guelpa;Lorenzo Bottaccioli;Vittorio Verda;Edoardo Patti","doi":"10.1109/TSUSC.2024.3449977","DOIUrl":null,"url":null,"abstract":"Integrated modeling and simulation are crucial for optimizing cities’ energy planning. Existing sector-specific analyses have implementation limitations in representing interactions across infrastructures, limiting optimization potentials. An integrated framework simulating multiple interacting components from a systemic perspective could reveal efficiency gains, flexibility, and synergies across urban energy networks to guide sustainable energy transitions. Co-simulation approaches are gaining attention for analyzing complex interconnected systems like District Heating (DH). Traditional single-discipline models present limitations in fully representing the interconnectivity between district heating networks and related subsystems, such as those in buildings and energy generation. Therefore, we propose a co-simulation based framework to simulate DH system behavior while easily integrating models of other subsystems and Functional Mock-up Unit (FMU) simulators. We tested this Plug&Play modular framework for Demand Side Management (DSM) and Storage-based strategies, evaluating their effectiveness in peak reduction while lowering the temperatures of the network.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 2","pages":"408-417"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648783","citationCount":"0","resultStr":"{\"title\":\"A Modular Co-Simulation Platform for Comparing Flexibility Solutions in District Heating Under Variable Operating Conditions\",\"authors\":\"Pietro Rando Mazzarino;Martina Capone;Elisa Guelpa;Lorenzo Bottaccioli;Vittorio Verda;Edoardo Patti\",\"doi\":\"10.1109/TSUSC.2024.3449977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated modeling and simulation are crucial for optimizing cities’ energy planning. Existing sector-specific analyses have implementation limitations in representing interactions across infrastructures, limiting optimization potentials. An integrated framework simulating multiple interacting components from a systemic perspective could reveal efficiency gains, flexibility, and synergies across urban energy networks to guide sustainable energy transitions. Co-simulation approaches are gaining attention for analyzing complex interconnected systems like District Heating (DH). Traditional single-discipline models present limitations in fully representing the interconnectivity between district heating networks and related subsystems, such as those in buildings and energy generation. Therefore, we propose a co-simulation based framework to simulate DH system behavior while easily integrating models of other subsystems and Functional Mock-up Unit (FMU) simulators. We tested this Plug&Play modular framework for Demand Side Management (DSM) and Storage-based strategies, evaluating their effectiveness in peak reduction while lowering the temperatures of the network.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"10 2\",\"pages\":\"408-417\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648783\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10648783/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10648783/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Modular Co-Simulation Platform for Comparing Flexibility Solutions in District Heating Under Variable Operating Conditions
Integrated modeling and simulation are crucial for optimizing cities’ energy planning. Existing sector-specific analyses have implementation limitations in representing interactions across infrastructures, limiting optimization potentials. An integrated framework simulating multiple interacting components from a systemic perspective could reveal efficiency gains, flexibility, and synergies across urban energy networks to guide sustainable energy transitions. Co-simulation approaches are gaining attention for analyzing complex interconnected systems like District Heating (DH). Traditional single-discipline models present limitations in fully representing the interconnectivity between district heating networks and related subsystems, such as those in buildings and energy generation. Therefore, we propose a co-simulation based framework to simulate DH system behavior while easily integrating models of other subsystems and Functional Mock-up Unit (FMU) simulators. We tested this Plug&Play modular framework for Demand Side Management (DSM) and Storage-based strategies, evaluating their effectiveness in peak reduction while lowering the temperatures of the network.