Jingwei Chen;Zihan Wu;Jingqing Cheng;Xiaohua Xu;Feiping Nie
{"title":"调和-最大割制导的图聚类","authors":"Jingwei Chen;Zihan Wu;Jingqing Cheng;Xiaohua Xu;Feiping Nie","doi":"10.1109/TKDE.2025.3542839","DOIUrl":null,"url":null,"abstract":"Graph clustering has become a crucial technique for uncovering community structures in complex network data. However, existing approaches often introduce cumbersome regularization or constraints (hyperparameter tuning burden) to obtain balanced clustering results, thereby increasing hyperparameter tuning requirements and intermediate variables. These limitations can lead to suboptimal performance, particularly in scenarios involving imbalanced clusters or large-scale datasets. Besides, most graph cut clustering methods solve two separate discrete problems, resulting in information loss and relying on time-consuming eigen-decomposition. To address these challenges, this paper propose an effective graph cut framework, termed Harmonic MaxMin Cut (HMMC), inspired by worst-case objective optimization and the harmonic mean. Unlike traditional spectral clustering, HMMC produces all cluster assignments in a single step, eliminating the need for additional discretization and notably enhancing robustness to “worst-case cluster” boundaries. this paper further devise a fast coordinate descent (CD) solver that scales linearly complexity with the graph size, offering a computationally efficient alternative to eigen decomposition. Extensive experiments on real-world datasets demonstrate that HMMC is comparable to, or even surpasses, state-of-the-art methods, while also finding more favorable local solutions than non-negative matrix factorization techniques.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2600-2613"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Clustering With Harmonic-Maxmin Cut Guidance\",\"authors\":\"Jingwei Chen;Zihan Wu;Jingqing Cheng;Xiaohua Xu;Feiping Nie\",\"doi\":\"10.1109/TKDE.2025.3542839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph clustering has become a crucial technique for uncovering community structures in complex network data. However, existing approaches often introduce cumbersome regularization or constraints (hyperparameter tuning burden) to obtain balanced clustering results, thereby increasing hyperparameter tuning requirements and intermediate variables. These limitations can lead to suboptimal performance, particularly in scenarios involving imbalanced clusters or large-scale datasets. Besides, most graph cut clustering methods solve two separate discrete problems, resulting in information loss and relying on time-consuming eigen-decomposition. To address these challenges, this paper propose an effective graph cut framework, termed Harmonic MaxMin Cut (HMMC), inspired by worst-case objective optimization and the harmonic mean. Unlike traditional spectral clustering, HMMC produces all cluster assignments in a single step, eliminating the need for additional discretization and notably enhancing robustness to “worst-case cluster” boundaries. this paper further devise a fast coordinate descent (CD) solver that scales linearly complexity with the graph size, offering a computationally efficient alternative to eigen decomposition. Extensive experiments on real-world datasets demonstrate that HMMC is comparable to, or even surpasses, state-of-the-art methods, while also finding more favorable local solutions than non-negative matrix factorization techniques.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 5\",\"pages\":\"2600-2613\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891596/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891596/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Graph Clustering With Harmonic-Maxmin Cut Guidance
Graph clustering has become a crucial technique for uncovering community structures in complex network data. However, existing approaches often introduce cumbersome regularization or constraints (hyperparameter tuning burden) to obtain balanced clustering results, thereby increasing hyperparameter tuning requirements and intermediate variables. These limitations can lead to suboptimal performance, particularly in scenarios involving imbalanced clusters or large-scale datasets. Besides, most graph cut clustering methods solve two separate discrete problems, resulting in information loss and relying on time-consuming eigen-decomposition. To address these challenges, this paper propose an effective graph cut framework, termed Harmonic MaxMin Cut (HMMC), inspired by worst-case objective optimization and the harmonic mean. Unlike traditional spectral clustering, HMMC produces all cluster assignments in a single step, eliminating the need for additional discretization and notably enhancing robustness to “worst-case cluster” boundaries. this paper further devise a fast coordinate descent (CD) solver that scales linearly complexity with the graph size, offering a computationally efficient alternative to eigen decomposition. Extensive experiments on real-world datasets demonstrate that HMMC is comparable to, or even surpasses, state-of-the-art methods, while also finding more favorable local solutions than non-negative matrix factorization techniques.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.