SCHENO:测量图式与图中的噪声

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Justus Isaiah Hibshman;Adnan Hoq;Tim Weninger
{"title":"SCHENO:测量图式与图中的噪声","authors":"Justus Isaiah Hibshman;Adnan Hoq;Tim Weninger","doi":"10.1109/TKDE.2025.3543032","DOIUrl":null,"url":null,"abstract":"Real-world data is typically a noisy manifestation of a core pattern (<italic>schema</i>), and the purpose of data mining algorithms is to uncover that pattern, thereby splitting (<italic>i.e.</i> decomposing) the data into schema and noise. We introduce SCHENO, a principled evaluation metric for the goodness of a schema-noise decomposition of a graph. SCHENO captures how schematic the schema is, how noisy the noise is, and how well the combination of the two represent the original graph data. We visually demonstrate what this metric prioritizes in small graphs, then show that if SCHENO is used as the fitness function for a simple optimization strategy, we can uncover a wide variety of patterns. Finally, we evaluate several well-known graph mining algorithms with this metric; we find that although they produce patterns, those patterns are not always the best representation of the input data.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2946-2957"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCHENO: Measuring Schema vs. Noise in Graphs\",\"authors\":\"Justus Isaiah Hibshman;Adnan Hoq;Tim Weninger\",\"doi\":\"10.1109/TKDE.2025.3543032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world data is typically a noisy manifestation of a core pattern (<italic>schema</i>), and the purpose of data mining algorithms is to uncover that pattern, thereby splitting (<italic>i.e.</i> decomposing) the data into schema and noise. We introduce SCHENO, a principled evaluation metric for the goodness of a schema-noise decomposition of a graph. SCHENO captures how schematic the schema is, how noisy the noise is, and how well the combination of the two represent the original graph data. We visually demonstrate what this metric prioritizes in small graphs, then show that if SCHENO is used as the fitness function for a simple optimization strategy, we can uncover a wide variety of patterns. Finally, we evaluate several well-known graph mining algorithms with this metric; we find that although they produce patterns, those patterns are not always the best representation of the input data.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 5\",\"pages\":\"2946-2957\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891452/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891452/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现实世界的数据通常是核心模式(模式)的噪声表现,数据挖掘算法的目的是揭示该模式,从而将数据分割(即分解)为模式和噪声。我们引入了SCHENO,一个有原则的评价图的模式-噪声分解优劣性的度量。SCHENO捕捉到模式的示意图程度、噪声程度以及两者的组合如何很好地表示原始图形数据。我们在小图中直观地展示了这个指标的优先级,然后表明,如果将SCHENO用作简单优化策略的适应度函数,我们可以发现各种各样的模式。最后,我们用这个度量评估了几种著名的图挖掘算法;我们发现,尽管它们产生模式,但这些模式并不总是输入数据的最佳表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCHENO: Measuring Schema vs. Noise in Graphs
Real-world data is typically a noisy manifestation of a core pattern (schema), and the purpose of data mining algorithms is to uncover that pattern, thereby splitting (i.e. decomposing) the data into schema and noise. We introduce SCHENO, a principled evaluation metric for the goodness of a schema-noise decomposition of a graph. SCHENO captures how schematic the schema is, how noisy the noise is, and how well the combination of the two represent the original graph data. We visually demonstrate what this metric prioritizes in small graphs, then show that if SCHENO is used as the fitness function for a simple optimization strategy, we can uncover a wide variety of patterns. Finally, we evaluate several well-known graph mining algorithms with this metric; we find that although they produce patterns, those patterns are not always the best representation of the input data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信