{"title":"Cafe:利用缺失数据异构性改进联邦数据插入","authors":"Sitao Min;Hafiz Asif;Xinyue Wang;Jaideep Vaidya","doi":"10.1109/TKDE.2025.3537403","DOIUrl":null,"url":null,"abstract":"Federated learning (FL), a decentralized machine learning approach, offers great performance while alleviating autonomy and confidentiality concerns. Despite FL’s popularity, how to deal with missing values in a federated manner is not well understood. In this work, we initiate a study of federated imputation of missing values, particularly in complex scenarios, where missing data heterogeneity exists and the state-of-the-art (SOTA) approaches for federated imputation suffer from significant loss in imputation quality. We propose Cafe, a personalized FL approach for missing data imputation. Cafe is inspired from the observation that heterogeneity can induce differences in observable and missing data distribution across clients, and that these differences can be leveraged to improve the imputation quality. Cafe computes personalized weights that are automatically calibrated for the level of heterogeneity, which can remain unknown, to develop personalized imputation models for each client. An extensive empirical evaluation over a variety of settings demonstrates that Cafe matches the performance of SOTA baselines in homogeneous settings while significantly outperforming the baselines in heterogeneous settings.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2266-2281"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cafe: Improved Federated Data Imputation by Leveraging Missing Data Heterogeneity\",\"authors\":\"Sitao Min;Hafiz Asif;Xinyue Wang;Jaideep Vaidya\",\"doi\":\"10.1109/TKDE.2025.3537403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL), a decentralized machine learning approach, offers great performance while alleviating autonomy and confidentiality concerns. Despite FL’s popularity, how to deal with missing values in a federated manner is not well understood. In this work, we initiate a study of federated imputation of missing values, particularly in complex scenarios, where missing data heterogeneity exists and the state-of-the-art (SOTA) approaches for federated imputation suffer from significant loss in imputation quality. We propose Cafe, a personalized FL approach for missing data imputation. Cafe is inspired from the observation that heterogeneity can induce differences in observable and missing data distribution across clients, and that these differences can be leveraged to improve the imputation quality. Cafe computes personalized weights that are automatically calibrated for the level of heterogeneity, which can remain unknown, to develop personalized imputation models for each client. An extensive empirical evaluation over a variety of settings demonstrates that Cafe matches the performance of SOTA baselines in homogeneous settings while significantly outperforming the baselines in heterogeneous settings.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 5\",\"pages\":\"2266-2281\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10858753/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858753/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cafe: Improved Federated Data Imputation by Leveraging Missing Data Heterogeneity
Federated learning (FL), a decentralized machine learning approach, offers great performance while alleviating autonomy and confidentiality concerns. Despite FL’s popularity, how to deal with missing values in a federated manner is not well understood. In this work, we initiate a study of federated imputation of missing values, particularly in complex scenarios, where missing data heterogeneity exists and the state-of-the-art (SOTA) approaches for federated imputation suffer from significant loss in imputation quality. We propose Cafe, a personalized FL approach for missing data imputation. Cafe is inspired from the observation that heterogeneity can induce differences in observable and missing data distribution across clients, and that these differences can be leveraged to improve the imputation quality. Cafe computes personalized weights that are automatically calibrated for the level of heterogeneity, which can remain unknown, to develop personalized imputation models for each client. An extensive empirical evaluation over a variety of settings demonstrates that Cafe matches the performance of SOTA baselines in homogeneous settings while significantly outperforming the baselines in heterogeneous settings.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.