线性阶上的分段凸嵌入性

IF 0.6 2区 数学 Q2 LOGIC
Martina Iannella , Alberto Marcone , Luca Motto Ros , Vadim Weinstein
{"title":"线性阶上的分段凸嵌入性","authors":"Martina Iannella ,&nbsp;Alberto Marcone ,&nbsp;Luca Motto Ros ,&nbsp;Vadim Weinstein","doi":"10.1016/j.apal.2025.103581","DOIUrl":null,"url":null,"abstract":"<div><div>Given a nonempty set <span><math><mi>L</mi></math></span> of linear orders, we say that the linear order <em>L</em> is <span><math><mi>L</mi></math></span>-convex embeddable into the linear order <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> if it is possible to partition <em>L</em> into convex sets indexed by some element of <span><math><mi>L</mi></math></span> which are isomorphic to convex subsets of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> ordered in the same way. This notion generalizes convex embeddability and (finite) piecewise convex embeddability (both studied in <span><span>[13]</span></span>), which are the special cases <span><math><mi>L</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><mi>L</mi><mo>=</mo><mrow><mi>Fin</mi></mrow></math></span>. We focus mainly on the behavior of these relations on the set of countable linear orders, first characterizing when they are transitive, and hence a quasi-order. We then study these quasi-orders from a combinatorial point of view, and analyze their complexity with respect to Borel reducibility. Finally, we extend our analysis to uncountable linear orders.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103581"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piecewise convex embeddability on linear orders\",\"authors\":\"Martina Iannella ,&nbsp;Alberto Marcone ,&nbsp;Luca Motto Ros ,&nbsp;Vadim Weinstein\",\"doi\":\"10.1016/j.apal.2025.103581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a nonempty set <span><math><mi>L</mi></math></span> of linear orders, we say that the linear order <em>L</em> is <span><math><mi>L</mi></math></span>-convex embeddable into the linear order <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> if it is possible to partition <em>L</em> into convex sets indexed by some element of <span><math><mi>L</mi></math></span> which are isomorphic to convex subsets of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> ordered in the same way. This notion generalizes convex embeddability and (finite) piecewise convex embeddability (both studied in <span><span>[13]</span></span>), which are the special cases <span><math><mi>L</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><mi>L</mi><mo>=</mo><mrow><mi>Fin</mi></mrow></math></span>. We focus mainly on the behavior of these relations on the set of countable linear orders, first characterizing when they are transitive, and hence a quasi-order. We then study these quasi-orders from a combinatorial point of view, and analyze their complexity with respect to Borel reducibility. Finally, we extend our analysis to uncountable linear orders.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 8\",\"pages\":\"Article 103581\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000302\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000302","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

给定一个线性阶的非空集合L,如果有可能将L划分为由L中的某些元素索引的凸集,且这些元素与L ‘的凸子集同构,则我们说线性阶L是L-凸可嵌入到线性阶L ’中的。这个概念推广了凸可嵌入性和(有限)分段凸可嵌入性(两者都在[13]中研究过),它们是L={1}和L=Fin的特殊情况。我们主要关注这些关系在可数线性阶集合上的行为,首先刻画了它们什么时候是可传递的,因此是一个拟阶。然后我们从组合的角度研究了这些拟序,并分析了它们在Borel可约性方面的复杂性。最后,我们将分析扩展到不可数线性阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piecewise convex embeddability on linear orders
Given a nonempty set L of linear orders, we say that the linear order L is L-convex embeddable into the linear order L if it is possible to partition L into convex sets indexed by some element of L which are isomorphic to convex subsets of L ordered in the same way. This notion generalizes convex embeddability and (finite) piecewise convex embeddability (both studied in [13]), which are the special cases L={1} and L=Fin. We focus mainly on the behavior of these relations on the set of countable linear orders, first characterizing when they are transitive, and hence a quasi-order. We then study these quasi-orders from a combinatorial point of view, and analyze their complexity with respect to Borel reducibility. Finally, we extend our analysis to uncountable linear orders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信