Kai Feng , Zhenlin Wang , Guanfang Li , Peilin Zhang , Zhichao Wang , Yujia Wang , Ying Tang , Bin Jiang , Kouqi Liu
{"title":"基于有限元法的含砾砂岩储层力学特征及裂缝扩展机制综合研究","authors":"Kai Feng , Zhenlin Wang , Guanfang Li , Peilin Zhang , Zhichao Wang , Yujia Wang , Ying Tang , Bin Jiang , Kouqi Liu","doi":"10.1016/j.geoen.2025.213860","DOIUrl":null,"url":null,"abstract":"<div><div>Gravel-bearing sandstone reservoirs represent a significant type of reservoir in oil and gas exploration. Due to the difference of the spatial random distribution the content and the shape of the gravel particles, these reservoirs exhibit complex mechanical properties and failure modes. In this study, a numerical model of gravel-bearing sandstone was developed by using the Finite Element Method (FEM) and were verified by the actual indoor experimental data. The effect of the gravel particle sizes, gravel content, and gravel types on the compressive peak strength and microcrack evolution processes are further analyzed. The results reveal that cracks initiate within the sandstone matrix surrounding the gravel and propagate through the gravel with continued loading. The primary factors governing the stability of gravel-bearing sandstone are the gravel radius and content. The variation in gravel penetration rate is synchronized with the changes in peak strength. By embedding gravel particles of different shapes into the model, it is observed that the peak compressive strength of round gravel is comparable to that of elliptical gravel, with both exhibiting higher peak strengths than angular gravel. Regression models demonstrate that the tensile strength difference between the gravel and the sandstone matrix is a critical parameter influencing gravel penetration. Confining pressure has a relatively minor effect on the elastic modulus, while its impact on peak compressive strength is significantly more pronounced.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"251 ","pages":"Article 213860"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study of the mechanical characteristics and fracture propagation mechanisms of gravel-bearing sandstone reservoirs based on the finite element method\",\"authors\":\"Kai Feng , Zhenlin Wang , Guanfang Li , Peilin Zhang , Zhichao Wang , Yujia Wang , Ying Tang , Bin Jiang , Kouqi Liu\",\"doi\":\"10.1016/j.geoen.2025.213860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gravel-bearing sandstone reservoirs represent a significant type of reservoir in oil and gas exploration. Due to the difference of the spatial random distribution the content and the shape of the gravel particles, these reservoirs exhibit complex mechanical properties and failure modes. In this study, a numerical model of gravel-bearing sandstone was developed by using the Finite Element Method (FEM) and were verified by the actual indoor experimental data. The effect of the gravel particle sizes, gravel content, and gravel types on the compressive peak strength and microcrack evolution processes are further analyzed. The results reveal that cracks initiate within the sandstone matrix surrounding the gravel and propagate through the gravel with continued loading. The primary factors governing the stability of gravel-bearing sandstone are the gravel radius and content. The variation in gravel penetration rate is synchronized with the changes in peak strength. By embedding gravel particles of different shapes into the model, it is observed that the peak compressive strength of round gravel is comparable to that of elliptical gravel, with both exhibiting higher peak strengths than angular gravel. Regression models demonstrate that the tensile strength difference between the gravel and the sandstone matrix is a critical parameter influencing gravel penetration. Confining pressure has a relatively minor effect on the elastic modulus, while its impact on peak compressive strength is significantly more pronounced.</div></div>\",\"PeriodicalId\":100578,\"journal\":{\"name\":\"Geoenergy Science and Engineering\",\"volume\":\"251 \",\"pages\":\"Article 213860\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenergy Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949891025002180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025002180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Comprehensive study of the mechanical characteristics and fracture propagation mechanisms of gravel-bearing sandstone reservoirs based on the finite element method
Gravel-bearing sandstone reservoirs represent a significant type of reservoir in oil and gas exploration. Due to the difference of the spatial random distribution the content and the shape of the gravel particles, these reservoirs exhibit complex mechanical properties and failure modes. In this study, a numerical model of gravel-bearing sandstone was developed by using the Finite Element Method (FEM) and were verified by the actual indoor experimental data. The effect of the gravel particle sizes, gravel content, and gravel types on the compressive peak strength and microcrack evolution processes are further analyzed. The results reveal that cracks initiate within the sandstone matrix surrounding the gravel and propagate through the gravel with continued loading. The primary factors governing the stability of gravel-bearing sandstone are the gravel radius and content. The variation in gravel penetration rate is synchronized with the changes in peak strength. By embedding gravel particles of different shapes into the model, it is observed that the peak compressive strength of round gravel is comparable to that of elliptical gravel, with both exhibiting higher peak strengths than angular gravel. Regression models demonstrate that the tensile strength difference between the gravel and the sandstone matrix is a critical parameter influencing gravel penetration. Confining pressure has a relatively minor effect on the elastic modulus, while its impact on peak compressive strength is significantly more pronounced.