随机因变量函数的Hoeffding分解

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Marouane Il Idrissi , Nicolas Bousquet , Fabrice Gamboa , Bertrand Iooss , Jean-Michel Loubes
{"title":"随机因变量函数的Hoeffding分解","authors":"Marouane Il Idrissi ,&nbsp;Nicolas Bousquet ,&nbsp;Fabrice Gamboa ,&nbsp;Bertrand Iooss ,&nbsp;Jean-Michel Loubes","doi":"10.1016/j.jmva.2025.105444","DOIUrl":null,"url":null,"abstract":"<div><div>Hoeffding’s functional decomposition is the cornerstone of many post-hoc interpretability methods. It entails decomposing arbitrary functions of mutually independent random variables as a sum of interactions. Many generalizations to dependent covariables have been proposed throughout the years, which rely on finding a set of suitable projectors. This paper characterizes such projectors under hierarchical orthogonality constraints and mild assumptions on the variable’s probabilistic structure. Our approach is deeply rooted in Hilbert space theory, giving intuitive insights on defining, identifying, and separating interactions from the effects due to the variables’ dependence structure. This new decomposition is then leveraged to define a new functional analysis of variance. Toy cases of functions of bivariate Bernoulli and Gaussian random variables are studied.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105444"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hoeffding decomposition of functions of random dependent variables\",\"authors\":\"Marouane Il Idrissi ,&nbsp;Nicolas Bousquet ,&nbsp;Fabrice Gamboa ,&nbsp;Bertrand Iooss ,&nbsp;Jean-Michel Loubes\",\"doi\":\"10.1016/j.jmva.2025.105444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hoeffding’s functional decomposition is the cornerstone of many post-hoc interpretability methods. It entails decomposing arbitrary functions of mutually independent random variables as a sum of interactions. Many generalizations to dependent covariables have been proposed throughout the years, which rely on finding a set of suitable projectors. This paper characterizes such projectors under hierarchical orthogonality constraints and mild assumptions on the variable’s probabilistic structure. Our approach is deeply rooted in Hilbert space theory, giving intuitive insights on defining, identifying, and separating interactions from the effects due to the variables’ dependence structure. This new decomposition is then leveraged to define a new functional analysis of variance. Toy cases of functions of bivariate Bernoulli and Gaussian random variables are studied.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"208 \",\"pages\":\"Article 105444\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000399\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000399","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

Hoeffding的功能分解是许多事后可解释性方法的基石。它需要将相互独立的随机变量的任意函数分解为相互作用的总和。多年来,已经提出了许多关于相关协变量的推广,这些推广依赖于找到一组合适的投影。本文在层次正交性约束和对变量概率结构的温和假设下,对这类投影进行了刻画。我们的方法深深植根于希尔伯特空间理论,在定义、识别和分离由于变量依赖结构而产生的相互作用方面提供了直观的见解。然后利用这个新的分解来定义方差的新的功能分析。研究了二元伯努利和高斯随机变量函数的典型情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hoeffding decomposition of functions of random dependent variables
Hoeffding’s functional decomposition is the cornerstone of many post-hoc interpretability methods. It entails decomposing arbitrary functions of mutually independent random variables as a sum of interactions. Many generalizations to dependent covariables have been proposed throughout the years, which rely on finding a set of suitable projectors. This paper characterizes such projectors under hierarchical orthogonality constraints and mild assumptions on the variable’s probabilistic structure. Our approach is deeply rooted in Hilbert space theory, giving intuitive insights on defining, identifying, and separating interactions from the effects due to the variables’ dependence structure. This new decomposition is then leveraged to define a new functional analysis of variance. Toy cases of functions of bivariate Bernoulli and Gaussian random variables are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信