一种多尺度多模态系统动态监测的分层方案

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiaorao Wang , Lishuai Li , S. Joe Qin
{"title":"一种多尺度多模态系统动态监测的分层方案","authors":"Jiaorao Wang ,&nbsp;Lishuai Li ,&nbsp;S. Joe Qin","doi":"10.1016/j.compchemeng.2025.109107","DOIUrl":null,"url":null,"abstract":"<div><div>Complex chemical plant operations exhibit multi-scale dynamics and multi-mode characteristics. Existing methods typically address either multi-scale, dynamic, or multi-mode monitoring separately. This paper proposes a general hierarchical scheme for dynamic monitoring of systems with multi-mode dynamic behaviors. The core strength of the proposed method lies in its iterative procedure, which comprises two steps: dynamic pattern modeling and mode segmentation. Firstly, dynamic patterns across different modes are captured using latent vector autoregressive (LaVAR) modeling. In mode segmentation, data representing new dynamic patterns are filtered for the construction of the next LaVAR model, guided by two monitoring indices. The hierarchical structure sequentially extracts dynamic patterns, inherently dealing with unbalanced data common in industrial applications. Experiments are conducted to demonstrate the effectiveness of the proposed scheme for multi-mode dynamic system monitoring.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109107"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hierarchical scheme for dynamic monitoring of multi-scale multi-mode systems\",\"authors\":\"Jiaorao Wang ,&nbsp;Lishuai Li ,&nbsp;S. Joe Qin\",\"doi\":\"10.1016/j.compchemeng.2025.109107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Complex chemical plant operations exhibit multi-scale dynamics and multi-mode characteristics. Existing methods typically address either multi-scale, dynamic, or multi-mode monitoring separately. This paper proposes a general hierarchical scheme for dynamic monitoring of systems with multi-mode dynamic behaviors. The core strength of the proposed method lies in its iterative procedure, which comprises two steps: dynamic pattern modeling and mode segmentation. Firstly, dynamic patterns across different modes are captured using latent vector autoregressive (LaVAR) modeling. In mode segmentation, data representing new dynamic patterns are filtered for the construction of the next LaVAR model, guided by two monitoring indices. The hierarchical structure sequentially extracts dynamic patterns, inherently dealing with unbalanced data common in industrial applications. Experiments are conducted to demonstrate the effectiveness of the proposed scheme for multi-mode dynamic system monitoring.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"198 \",\"pages\":\"Article 109107\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425001115\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001115","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

复杂的化工厂运行具有多尺度动态和多模式的特点。现有方法通常分别处理多尺度、动态或多模式监测。本文提出了一种用于多模态动态行为系统动态监测的通用分层方案。该方法的核心优势在于其迭代过程,包括动态模式建模和模式分割两步。首先,利用潜在向量自回归(LaVAR)模型捕获不同模式下的动态模式;在模式分割中,在两个监测指标的指导下,过滤代表新动态模式的数据,用于构建下一个LaVAR模型。层次结构按顺序提取动态模式,固有地处理工业应用中常见的不平衡数据。实验验证了该方案在多模态动态系统监测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hierarchical scheme for dynamic monitoring of multi-scale multi-mode systems
Complex chemical plant operations exhibit multi-scale dynamics and multi-mode characteristics. Existing methods typically address either multi-scale, dynamic, or multi-mode monitoring separately. This paper proposes a general hierarchical scheme for dynamic monitoring of systems with multi-mode dynamic behaviors. The core strength of the proposed method lies in its iterative procedure, which comprises two steps: dynamic pattern modeling and mode segmentation. Firstly, dynamic patterns across different modes are captured using latent vector autoregressive (LaVAR) modeling. In mode segmentation, data representing new dynamic patterns are filtered for the construction of the next LaVAR model, guided by two monitoring indices. The hierarchical structure sequentially extracts dynamic patterns, inherently dealing with unbalanced data common in industrial applications. Experiments are conducted to demonstrate the effectiveness of the proposed scheme for multi-mode dynamic system monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信