库普曼算子和生成器的模块化数据驱动逼近

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Yang Guo , Manuel Schaller , Karl Worthmann , Stefan Streif
{"title":"库普曼算子和生成器的模块化数据驱动逼近","authors":"Yang Guo ,&nbsp;Manuel Schaller ,&nbsp;Karl Worthmann ,&nbsp;Stefan Streif","doi":"10.1016/j.physd.2025.134651","DOIUrl":null,"url":null,"abstract":"<div><div>Extended Dynamic Mode Decomposition (EDMD) is a widely-used data-driven approach to learn an approximation of the Koopman operator. Consequently, it provides a powerful tool for data-driven analysis, prediction, and control of nonlinear dynamical (control) systems. In this work, we propose a novel modularized EDMD scheme tailored to interconnected systems. To this end, we utilize the structure of the Koopman generator that allows to learn the dynamics of subsystems individually and thus alleviates the curse of dimensionality by considering observable functions on smaller state spaces. Moreover, our approach canonically enables transfer learning if a system encompasses multiple copies of a model as well as efficient adaption to topology changes without retraining. We provide probabilistic finite-data bounds on the estimation error using tools from graph theory. The efficacy of the method is illustrated by means of various numerical examples.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134651"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modularized data-driven approximation of the Koopman operator and generator\",\"authors\":\"Yang Guo ,&nbsp;Manuel Schaller ,&nbsp;Karl Worthmann ,&nbsp;Stefan Streif\",\"doi\":\"10.1016/j.physd.2025.134651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extended Dynamic Mode Decomposition (EDMD) is a widely-used data-driven approach to learn an approximation of the Koopman operator. Consequently, it provides a powerful tool for data-driven analysis, prediction, and control of nonlinear dynamical (control) systems. In this work, we propose a novel modularized EDMD scheme tailored to interconnected systems. To this end, we utilize the structure of the Koopman generator that allows to learn the dynamics of subsystems individually and thus alleviates the curse of dimensionality by considering observable functions on smaller state spaces. Moreover, our approach canonically enables transfer learning if a system encompasses multiple copies of a model as well as efficient adaption to topology changes without retraining. We provide probabilistic finite-data bounds on the estimation error using tools from graph theory. The efficacy of the method is illustrated by means of various numerical examples.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134651\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925001307\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001307","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

扩展动态模态分解(EDMD)是一种广泛使用的数据驱动学习库普曼算子近似的方法。因此,它为非线性动态(控制)系统的数据驱动分析、预测和控制提供了强大的工具。在这项工作中,我们提出了一种针对互联系统的模块化EDMD方案。为此,我们利用Koopman生成器的结构,允许单独学习子系统的动态,从而通过考虑较小状态空间上的可观察函数来减轻维度的诅咒。此外,如果系统包含模型的多个副本,并且无需重新训练即可有效地适应拓扑变化,则我们的方法通常支持迁移学习。我们利用图论的工具给出了估计误差的概率有限数据界。通过数值算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modularized data-driven approximation of the Koopman operator and generator
Extended Dynamic Mode Decomposition (EDMD) is a widely-used data-driven approach to learn an approximation of the Koopman operator. Consequently, it provides a powerful tool for data-driven analysis, prediction, and control of nonlinear dynamical (control) systems. In this work, we propose a novel modularized EDMD scheme tailored to interconnected systems. To this end, we utilize the structure of the Koopman generator that allows to learn the dynamics of subsystems individually and thus alleviates the curse of dimensionality by considering observable functions on smaller state spaces. Moreover, our approach canonically enables transfer learning if a system encompasses multiple copies of a model as well as efficient adaption to topology changes without retraining. We provide probabilistic finite-data bounds on the estimation error using tools from graph theory. The efficacy of the method is illustrated by means of various numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信