先进的人工智能驱动的入侵检测,以保护基于云的工业物联网

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Saima Siraj Qureshi , Jingsha He , Siraj Uddin Qureshi , Nafei Zhu , Ahsan Wajahat , Ahsan Nazir , Faheem Ullah , Abdul Wadud
{"title":"先进的人工智能驱动的入侵检测,以保护基于云的工业物联网","authors":"Saima Siraj Qureshi ,&nbsp;Jingsha He ,&nbsp;Siraj Uddin Qureshi ,&nbsp;Nafei Zhu ,&nbsp;Ahsan Wajahat ,&nbsp;Ahsan Nazir ,&nbsp;Faheem Ullah ,&nbsp;Abdul Wadud","doi":"10.1016/j.eij.2025.100644","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid integration of smart devices with cloud services in the Industrial Internet of Things (IIoT) has exposed significant vulnerabilities in conventional security protocols, making them insufficient against sophisticated cyber threats. Despite advancements in intrusion detection systems (IDS), there remains a critical need for highly accurate, adaptive, and scalable solutions for cloud-based IIoT environments. Motivated by this necessity, we propose an advanced AI-powered IDS leveraging Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. Developed using Python and the Kitsune dataset, our IDS demonstrates a remarkable detection accuracy of 98.68%, a low False Negative rate of 0.01%, and an impressive F1 score of 98.62%. Comparative analysis with other deep learning models validates the superior performance of our approach. This research contributes significantly to enhancing cybersecurity in cloud-based IIoT systems, offering a robust, scalable solution to mitigate evolving cyber threats.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"30 ","pages":"Article 100644"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced AI-driven intrusion detection for securing cloud-based industrial IoT\",\"authors\":\"Saima Siraj Qureshi ,&nbsp;Jingsha He ,&nbsp;Siraj Uddin Qureshi ,&nbsp;Nafei Zhu ,&nbsp;Ahsan Wajahat ,&nbsp;Ahsan Nazir ,&nbsp;Faheem Ullah ,&nbsp;Abdul Wadud\",\"doi\":\"10.1016/j.eij.2025.100644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid integration of smart devices with cloud services in the Industrial Internet of Things (IIoT) has exposed significant vulnerabilities in conventional security protocols, making them insufficient against sophisticated cyber threats. Despite advancements in intrusion detection systems (IDS), there remains a critical need for highly accurate, adaptive, and scalable solutions for cloud-based IIoT environments. Motivated by this necessity, we propose an advanced AI-powered IDS leveraging Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. Developed using Python and the Kitsune dataset, our IDS demonstrates a remarkable detection accuracy of 98.68%, a low False Negative rate of 0.01%, and an impressive F1 score of 98.62%. Comparative analysis with other deep learning models validates the superior performance of our approach. This research contributes significantly to enhancing cybersecurity in cloud-based IIoT systems, offering a robust, scalable solution to mitigate evolving cyber threats.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"30 \",\"pages\":\"Article 100644\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866525000374\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000374","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

工业物联网(IIoT)中智能设备与云服务的快速集成暴露了传统安全协议的重大漏洞,使其不足以应对复杂的网络威胁。尽管入侵检测系统(IDS)取得了进步,但对于基于云的工业物联网环境,仍然迫切需要高度精确、自适应和可扩展的解决方案。出于这种必要性,我们提出了一种先进的人工智能驱动的IDS,利用长短期记忆(LSTM)和门控循环单元(GRU)网络。使用Python和Kitsune数据集开发的IDS显示出98.68%的显着检测准确率,0.01%的低假阴性率和98.62%的令人印象深刻的F1分数。与其他深度学习模型的对比分析验证了我们方法的优越性能。这项研究为增强基于云的工业物联网系统的网络安全做出了重大贡献,提供了一个强大的、可扩展的解决方案,以减轻不断变化的网络威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced AI-driven intrusion detection for securing cloud-based industrial IoT
The rapid integration of smart devices with cloud services in the Industrial Internet of Things (IIoT) has exposed significant vulnerabilities in conventional security protocols, making them insufficient against sophisticated cyber threats. Despite advancements in intrusion detection systems (IDS), there remains a critical need for highly accurate, adaptive, and scalable solutions for cloud-based IIoT environments. Motivated by this necessity, we propose an advanced AI-powered IDS leveraging Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. Developed using Python and the Kitsune dataset, our IDS demonstrates a remarkable detection accuracy of 98.68%, a low False Negative rate of 0.01%, and an impressive F1 score of 98.62%. Comparative analysis with other deep learning models validates the superior performance of our approach. This research contributes significantly to enhancing cybersecurity in cloud-based IIoT systems, offering a robust, scalable solution to mitigate evolving cyber threats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信