Bing Li , Lingmin Liao , Sanju Velani , Baowei Wang , Evgeniy Zorin
{"title":"丢番图近似与传质原理:结合无界设置","authors":"Bing Li , Lingmin Liao , Sanju Velani , Baowei Wang , Evgeniy Zorin","doi":"10.1016/j.aim.2025.110248","DOIUrl":null,"url":null,"abstract":"<div><div>We develop the Mass Transference Principle for rectangles of Wang & Wu (Math. Ann. 2021) to incorporate the ‘unbounded’ setup; that is, when along some direction the lower order (at infinity) of the side lengths of the rectangles under consideration is infinity. As applications, we obtain the Hausdorff dimension of naturally occurring <span><math><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow></math></span> sets within the classical framework of simultaneous Diophantine approximation and the dynamical framework of shrinking target problems. For instance, concerning the former, for <span><math><mi>τ</mi><mo>></mo><mn>0</mn></math></span>, let <span><math><mi>S</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> denote the set of <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> simultaneously satisfying the inequalities <span><math><mo>‖</mo><mi>q</mi><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>‖</mo><mspace></mspace><mo><</mo><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mi>τ</mi></mrow></msup></math></span> and <span><math><mo>‖</mo><mi>q</mi><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>‖</mo><mspace></mspace><mo><</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>q</mi></mrow></msup></math></span> for infinitely many <span><math><mi>q</mi><mo>∈</mo><mi>N</mi></math></span>. Then, the ‘unbounded’ Mass Transference Principle enables us to show that <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub><mo></mo><mi>S</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mspace></mspace><mo>=</mo><mspace></mspace><mi>min</mi><mo></mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>τ</mi><mo>)</mo><mo>}</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"470 ","pages":"Article 110248"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diophantine approximation and the Mass Transference Principle: Incorporating the unbounded setup\",\"authors\":\"Bing Li , Lingmin Liao , Sanju Velani , Baowei Wang , Evgeniy Zorin\",\"doi\":\"10.1016/j.aim.2025.110248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop the Mass Transference Principle for rectangles of Wang & Wu (Math. Ann. 2021) to incorporate the ‘unbounded’ setup; that is, when along some direction the lower order (at infinity) of the side lengths of the rectangles under consideration is infinity. As applications, we obtain the Hausdorff dimension of naturally occurring <span><math><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow></math></span> sets within the classical framework of simultaneous Diophantine approximation and the dynamical framework of shrinking target problems. For instance, concerning the former, for <span><math><mi>τ</mi><mo>></mo><mn>0</mn></math></span>, let <span><math><mi>S</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> denote the set of <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> simultaneously satisfying the inequalities <span><math><mo>‖</mo><mi>q</mi><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>‖</mo><mspace></mspace><mo><</mo><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mi>τ</mi></mrow></msup></math></span> and <span><math><mo>‖</mo><mi>q</mi><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>‖</mo><mspace></mspace><mo><</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>q</mi></mrow></msup></math></span> for infinitely many <span><math><mi>q</mi><mo>∈</mo><mi>N</mi></math></span>. Then, the ‘unbounded’ Mass Transference Principle enables us to show that <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub><mo></mo><mi>S</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mspace></mspace><mo>=</mo><mspace></mspace><mi>min</mi><mo></mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>τ</mi><mo>)</mo><mo>}</mo></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"470 \",\"pages\":\"Article 110248\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000187082500146X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500146X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Diophantine approximation and the Mass Transference Principle: Incorporating the unbounded setup
We develop the Mass Transference Principle for rectangles of Wang & Wu (Math. Ann. 2021) to incorporate the ‘unbounded’ setup; that is, when along some direction the lower order (at infinity) of the side lengths of the rectangles under consideration is infinity. As applications, we obtain the Hausdorff dimension of naturally occurring sets within the classical framework of simultaneous Diophantine approximation and the dynamical framework of shrinking target problems. For instance, concerning the former, for , let denote the set of simultaneously satisfying the inequalities and for infinitely many . Then, the ‘unbounded’ Mass Transference Principle enables us to show that .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.