Walaa I. El-Sofany , Tahani D. Alanezi , Salman Latif , Ola Abdelhedi , Khaled Hamden
{"title":"n-杂环化合物:生产优化、生物活性评价及与炎症、肥胖、糖尿病和胰岛素信号通路相关的关键酶的硅对接","authors":"Walaa I. El-Sofany , Tahani D. Alanezi , Salman Latif , Ola Abdelhedi , Khaled Hamden","doi":"10.1016/j.enzmictec.2025.110639","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes is known to cause severe pancreatic inflammation and reduce insulin levels, leading us to investigate the effects of prodigiosin (PG), a red, heterocyclic bacterial compound extracted from Serratia marcescens. The physicochemical and nutritional conditions, along with the extraction solvents for PG, have been optimized for efficient production. PG was produced through bacterial culture, purified by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), characterized by Fourier-transform infrared spectroscopy (FTIR) and ultraviolet (UV) spectroscopy. <em>In vitro</em>, PG effectively inhibited key inflammatory enzymes, such as phospholipase A2 (PLA2) and elastase (ELA), in a dose-dependent manner, achieving maximum inhibition rates of 85.3 and 91.4 % at concentrations of 320 µg/mL, with IC₅₀ values of 63 µg/mL and 54.7 µg/mL, respectively. PG also exhibited a maximum inhibition of 82.4 % for myeloperoxidase (MPO) at a concentration of 160 µg/mL, with an IC₅₀ value of 25.9 µg/mL. This indicates that PG is a good candidate for treating these two metabolic diseases. Moreover, PG shows a significant ability to activate insulin signaling through its capacity to stimulate protein tyrosine phosphatase 1B (PTP1B) and inhibit dipeptidyl peptidase-4 (DPP-4), with IC₅₀ values of 67 and 28 µg/mL, respectively, compared to the specific inhibitors CLM and STG (with IC₅₀ values of 19 and 27 µg/mL, respectively). These powerful affinities, stability, and the durability of PG inhibition of these enzymes are confirmed by the determination of binding energy, ligand efficiency, and estimated inhibition constant (Ki). Conclusion: PG benefits from sustainable, cost-effective biological production and exhibits potent anti-inflammatory, antioxidant, and anti-diabetic properties, positioning it as a promising candidate for pharmaceutical and food applications.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"188 ","pages":"Article 110639"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prodigiosin As N-heterocyclic compound: Production optimization, bioactivity evaluation, and in-silico docking against key enzymes related to inflammation, obesity, diabetes, and the insulin signaling pathway\",\"authors\":\"Walaa I. El-Sofany , Tahani D. Alanezi , Salman Latif , Ola Abdelhedi , Khaled Hamden\",\"doi\":\"10.1016/j.enzmictec.2025.110639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetes is known to cause severe pancreatic inflammation and reduce insulin levels, leading us to investigate the effects of prodigiosin (PG), a red, heterocyclic bacterial compound extracted from Serratia marcescens. The physicochemical and nutritional conditions, along with the extraction solvents for PG, have been optimized for efficient production. PG was produced through bacterial culture, purified by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), characterized by Fourier-transform infrared spectroscopy (FTIR) and ultraviolet (UV) spectroscopy. <em>In vitro</em>, PG effectively inhibited key inflammatory enzymes, such as phospholipase A2 (PLA2) and elastase (ELA), in a dose-dependent manner, achieving maximum inhibition rates of 85.3 and 91.4 % at concentrations of 320 µg/mL, with IC₅₀ values of 63 µg/mL and 54.7 µg/mL, respectively. PG also exhibited a maximum inhibition of 82.4 % for myeloperoxidase (MPO) at a concentration of 160 µg/mL, with an IC₅₀ value of 25.9 µg/mL. This indicates that PG is a good candidate for treating these two metabolic diseases. Moreover, PG shows a significant ability to activate insulin signaling through its capacity to stimulate protein tyrosine phosphatase 1B (PTP1B) and inhibit dipeptidyl peptidase-4 (DPP-4), with IC₅₀ values of 67 and 28 µg/mL, respectively, compared to the specific inhibitors CLM and STG (with IC₅₀ values of 19 and 27 µg/mL, respectively). These powerful affinities, stability, and the durability of PG inhibition of these enzymes are confirmed by the determination of binding energy, ligand efficiency, and estimated inhibition constant (Ki). Conclusion: PG benefits from sustainable, cost-effective biological production and exhibits potent anti-inflammatory, antioxidant, and anti-diabetic properties, positioning it as a promising candidate for pharmaceutical and food applications.</div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"188 \",\"pages\":\"Article 110639\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022925000596\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000596","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Prodigiosin As N-heterocyclic compound: Production optimization, bioactivity evaluation, and in-silico docking against key enzymes related to inflammation, obesity, diabetes, and the insulin signaling pathway
Diabetes is known to cause severe pancreatic inflammation and reduce insulin levels, leading us to investigate the effects of prodigiosin (PG), a red, heterocyclic bacterial compound extracted from Serratia marcescens. The physicochemical and nutritional conditions, along with the extraction solvents for PG, have been optimized for efficient production. PG was produced through bacterial culture, purified by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), characterized by Fourier-transform infrared spectroscopy (FTIR) and ultraviolet (UV) spectroscopy. In vitro, PG effectively inhibited key inflammatory enzymes, such as phospholipase A2 (PLA2) and elastase (ELA), in a dose-dependent manner, achieving maximum inhibition rates of 85.3 and 91.4 % at concentrations of 320 µg/mL, with IC₅₀ values of 63 µg/mL and 54.7 µg/mL, respectively. PG also exhibited a maximum inhibition of 82.4 % for myeloperoxidase (MPO) at a concentration of 160 µg/mL, with an IC₅₀ value of 25.9 µg/mL. This indicates that PG is a good candidate for treating these two metabolic diseases. Moreover, PG shows a significant ability to activate insulin signaling through its capacity to stimulate protein tyrosine phosphatase 1B (PTP1B) and inhibit dipeptidyl peptidase-4 (DPP-4), with IC₅₀ values of 67 and 28 µg/mL, respectively, compared to the specific inhibitors CLM and STG (with IC₅₀ values of 19 and 27 µg/mL, respectively). These powerful affinities, stability, and the durability of PG inhibition of these enzymes are confirmed by the determination of binding energy, ligand efficiency, and estimated inhibition constant (Ki). Conclusion: PG benefits from sustainable, cost-effective biological production and exhibits potent anti-inflammatory, antioxidant, and anti-diabetic properties, positioning it as a promising candidate for pharmaceutical and food applications.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.