stz治疗的apoE/NOX1 DKO小鼠、apoE−/−/tg-EC-DHFR小鼠和叶酸对糖尿病动脉粥样硬化加速的缓解作用

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yixuan Zhang, Ji Youn Youn, Kai Huang, Yuhan Zhang, Hua Cai
{"title":"stz治疗的apoE/NOX1 DKO小鼠、apoE−/−/tg-EC-DHFR小鼠和叶酸对糖尿病动脉粥样硬化加速的缓解作用","authors":"Yixuan Zhang,&nbsp;Ji Youn Youn,&nbsp;Kai Huang,&nbsp;Yuhan Zhang,&nbsp;Hua Cai","doi":"10.1016/j.redox.2025.103570","DOIUrl":null,"url":null,"abstract":"<div><div>We and others have previously shown that uncoupling of endothelial nitric oxide synthase (eNOS) induces oxidative stress in diabetes, contributing to endothelial dysfunction. Activation of NADPH oxidase (NOX) isoform NOX1 by angiotensin II (Ang II) triggers eNOS uncoupling via deficiency in dihydrofolate reductase (DHFR) in streptozotocin (STZ)-induced type 1 diabetic mice. Presently, we investigated whether accelerated atherosclerosis is attenuated in apoE/NOX1 double knockout, and whether mice overexpressing DHFR in the endothelium (tg-EC-DHFR, generated in house) recouples eNOS to alleviate diabetic atherogenesis. At baseline, endothelial-specific DHFR overexpression recoupled eNOS and improved vasorelaxation in the aortas and mesenteric arteries of STZ-induced diabetic mice. Accelerated atherogenesis in STZ/high-fat diet (HFD) treated apoE<sup>−/−</sup> mice was markedly abrogated in tg-EC-DHFR background, establishing an important role of endothelial DHFR in maintaining vascular function and protecting from diabetic atherogenesis. Moreover, by crossing apoE<sup>−/−</sup> with NOX1 null mice (NOX1<sup>-/y</sup>), we found that NOX1 deletion markedly diminished atherosclerotic lesion formation in HFD + STZ-treated apoE<sup>−/−</sup>/NOX1<sup>-/y</sup> mice, indicating that NOX1 lies upstream of eNOS uncoupling in facilitating diabetic atherogenesis. Oral administration with folic acid (FA), shown to upregulate DHFR, robustly attenuated atherosclerotic lesion formation in HFD + STZ-treated apoE<sup>−/−</sup> mice similarly to NOX1 deletion. Taken together, our data for the first time demonstrate that endothelial DHFR plays an important role in the preservation of endothelial function and inhibition of atherosclerosis in diabetes, deficiency of which consequent to NOX1 activation mediates eNOS uncoupling driven lesion formation. Strategies targeting uncoupled eNOS prove to be robust treatment options for diabetic endothelial dysfunction and atherogenesis.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"82 ","pages":"Article 103570"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alleviation of accelerated diabetic atherogenesis in STZ-treated apoE/NOX1 DKO mice, apoE−/−/tg-EC-DHFR mice, and by folic acid\",\"authors\":\"Yixuan Zhang,&nbsp;Ji Youn Youn,&nbsp;Kai Huang,&nbsp;Yuhan Zhang,&nbsp;Hua Cai\",\"doi\":\"10.1016/j.redox.2025.103570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We and others have previously shown that uncoupling of endothelial nitric oxide synthase (eNOS) induces oxidative stress in diabetes, contributing to endothelial dysfunction. Activation of NADPH oxidase (NOX) isoform NOX1 by angiotensin II (Ang II) triggers eNOS uncoupling via deficiency in dihydrofolate reductase (DHFR) in streptozotocin (STZ)-induced type 1 diabetic mice. Presently, we investigated whether accelerated atherosclerosis is attenuated in apoE/NOX1 double knockout, and whether mice overexpressing DHFR in the endothelium (tg-EC-DHFR, generated in house) recouples eNOS to alleviate diabetic atherogenesis. At baseline, endothelial-specific DHFR overexpression recoupled eNOS and improved vasorelaxation in the aortas and mesenteric arteries of STZ-induced diabetic mice. Accelerated atherogenesis in STZ/high-fat diet (HFD) treated apoE<sup>−/−</sup> mice was markedly abrogated in tg-EC-DHFR background, establishing an important role of endothelial DHFR in maintaining vascular function and protecting from diabetic atherogenesis. Moreover, by crossing apoE<sup>−/−</sup> with NOX1 null mice (NOX1<sup>-/y</sup>), we found that NOX1 deletion markedly diminished atherosclerotic lesion formation in HFD + STZ-treated apoE<sup>−/−</sup>/NOX1<sup>-/y</sup> mice, indicating that NOX1 lies upstream of eNOS uncoupling in facilitating diabetic atherogenesis. Oral administration with folic acid (FA), shown to upregulate DHFR, robustly attenuated atherosclerotic lesion formation in HFD + STZ-treated apoE<sup>−/−</sup> mice similarly to NOX1 deletion. Taken together, our data for the first time demonstrate that endothelial DHFR plays an important role in the preservation of endothelial function and inhibition of atherosclerosis in diabetes, deficiency of which consequent to NOX1 activation mediates eNOS uncoupling driven lesion formation. Strategies targeting uncoupled eNOS prove to be robust treatment options for diabetic endothelial dysfunction and atherogenesis.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"82 \",\"pages\":\"Article 103570\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231725000837\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000837","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们和其他人之前已经表明,内皮一氧化氮合酶(eNOS)的解偶联诱导糖尿病的氧化应激,导致内皮功能障碍。在链脲佐菌素(STZ)诱导的1型糖尿病小鼠中,血管紧张素II (Ang II)激活NADPH氧化酶(NOX)异构体NOX1,通过缺乏二氢叶酸还原酶(DHFR)触发eNOS解偶联。目前,我们研究了apoE/NOX1双敲除是否会减轻加速动脉粥样硬化,以及内皮中过度表达DHFR (tg-EC-DHFR,内源性)是否与eNOS重新结合以减轻糖尿病动脉粥样硬化。在基线时,内皮特异性DHFR过表达可使stz诱导的糖尿病小鼠主动脉和肠系膜动脉的eNOS偶联,并改善血管松弛。在tg-EC-DHFR背景下,STZ/高脂肪饮食(HFD)处理的apoE−/−小鼠的动脉粥样硬化加速被明显消除,这表明内皮DHFR在维持血管功能和防止糖尿病动脉粥样硬化方面发挥了重要作用。此外,通过将apoE−/−与NOX1缺失小鼠(NOX1-/y)杂交,我们发现,在HFD + stz治疗的apoE−/−/NOX1-/y小鼠中,NOX1缺失显著减少了动脉粥样硬化病变的形成,这表明NOX1位于eNOS解偶联的上游,促进了糖尿病动脉粥样硬化的发生。在HFD + stz处理的apoE−/−小鼠中,口服叶酸(FA)可上调DHFR,与NOX1缺失相似,可显著减弱动脉粥样硬化病变的形成。综上所述,我们的数据首次证明了内皮DHFR在维持糖尿病的内皮功能和抑制动脉粥样硬化方面发挥着重要作用,而NOX1激活导致的内皮DHFR缺乏可介导eNOS解偶联驱动病变的形成。针对非偶联eNOS的策略被证明是糖尿病内皮功能障碍和动脉粥样硬化的有力治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alleviation of accelerated diabetic atherogenesis in STZ-treated apoE/NOX1 DKO mice, apoE−/−/tg-EC-DHFR mice, and by folic acid
We and others have previously shown that uncoupling of endothelial nitric oxide synthase (eNOS) induces oxidative stress in diabetes, contributing to endothelial dysfunction. Activation of NADPH oxidase (NOX) isoform NOX1 by angiotensin II (Ang II) triggers eNOS uncoupling via deficiency in dihydrofolate reductase (DHFR) in streptozotocin (STZ)-induced type 1 diabetic mice. Presently, we investigated whether accelerated atherosclerosis is attenuated in apoE/NOX1 double knockout, and whether mice overexpressing DHFR in the endothelium (tg-EC-DHFR, generated in house) recouples eNOS to alleviate diabetic atherogenesis. At baseline, endothelial-specific DHFR overexpression recoupled eNOS and improved vasorelaxation in the aortas and mesenteric arteries of STZ-induced diabetic mice. Accelerated atherogenesis in STZ/high-fat diet (HFD) treated apoE−/− mice was markedly abrogated in tg-EC-DHFR background, establishing an important role of endothelial DHFR in maintaining vascular function and protecting from diabetic atherogenesis. Moreover, by crossing apoE−/− with NOX1 null mice (NOX1-/y), we found that NOX1 deletion markedly diminished atherosclerotic lesion formation in HFD + STZ-treated apoE−/−/NOX1-/y mice, indicating that NOX1 lies upstream of eNOS uncoupling in facilitating diabetic atherogenesis. Oral administration with folic acid (FA), shown to upregulate DHFR, robustly attenuated atherosclerotic lesion formation in HFD + STZ-treated apoE−/− mice similarly to NOX1 deletion. Taken together, our data for the first time demonstrate that endothelial DHFR plays an important role in the preservation of endothelial function and inhibition of atherosclerosis in diabetes, deficiency of which consequent to NOX1 activation mediates eNOS uncoupling driven lesion formation. Strategies targeting uncoupled eNOS prove to be robust treatment options for diabetic endothelial dysfunction and atherogenesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信