0个s字符

Thomas Breuer , Michael Joswig , Gunter Malle
{"title":"0个s字符","authors":"Thomas Breuer ,&nbsp;Michael Joswig ,&nbsp;Gunter Malle","doi":"10.1016/j.jaca.2025.100031","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of <em>S</em>-characters of finite groups was introduced by Zhmud' as a generalisation of transitive permutation characters. Any non-trivial <em>S</em>-character takes a zero value on some group element. By a deep result depending on the classification of finite simple groups a non-trivial transitive permutation character even vanishes on some element of prime power order. J-P. Serre asked whether this generalises to <em>S</em>-characters. We provide a translation of this question into the language of polyhedral geometry and thereby construct many counterexamples, using the capabilities of the computer algebra system <span>OSCAR</span>.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"13 ","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeros of S-characters\",\"authors\":\"Thomas Breuer ,&nbsp;Michael Joswig ,&nbsp;Gunter Malle\",\"doi\":\"10.1016/j.jaca.2025.100031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The concept of <em>S</em>-characters of finite groups was introduced by Zhmud' as a generalisation of transitive permutation characters. Any non-trivial <em>S</em>-character takes a zero value on some group element. By a deep result depending on the classification of finite simple groups a non-trivial transitive permutation character even vanishes on some element of prime power order. J-P. Serre asked whether this generalises to <em>S</em>-characters. We provide a translation of this question into the language of polyhedral geometry and thereby construct many counterexamples, using the capabilities of the computer algebra system <span>OSCAR</span>.</div></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"13 \",\"pages\":\"Article 100031\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827725000026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827725000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限群s字的概念是由朱木作为传递置换字的推广引入的。任何非平凡的s字符在某个群元素上取零值。通过一个依赖于有限单群分类的深层结果,在一些素数幂次元上,一个非平凡传递置换特征甚至消失。j]。Serre问这是否适用于s字符。我们将这个问题翻译成多面体几何语言,从而利用计算机代数系统OSCAR的功能构建了许多反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zeros of S-characters
The concept of S-characters of finite groups was introduced by Zhmud' as a generalisation of transitive permutation characters. Any non-trivial S-character takes a zero value on some group element. By a deep result depending on the classification of finite simple groups a non-trivial transitive permutation character even vanishes on some element of prime power order. J-P. Serre asked whether this generalises to S-characters. We provide a translation of this question into the language of polyhedral geometry and thereby construct many counterexamples, using the capabilities of the computer algebra system OSCAR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信