刚性膨胀图

IF 1 2区 数学 Q1 MATHEMATICS
Alan Lew, Eran Nevo, Yuval Peled, Orit E. Raz
{"title":"刚性膨胀图","authors":"Alan Lew, Eran Nevo, Yuval Peled, Orit E. Raz","doi":"10.1007/s00493-025-00149-z","DOIUrl":null,"url":null,"abstract":"<p>Jordán and Tanigawa recently introduced the <i>d</i>-dimensional algebraic connectivity <span>\\(a_d(G)\\)</span> of a graph <i>G</i>. This is a quantitative measure of the <i>d</i>-dimensional rigidity of <i>G</i> which generalizes the well-studied notion of spectral expansion of graphs. We present a new lower bound for <span>\\(a_d(G)\\)</span> defined in terms of the spectral expansion of certain subgraphs of <i>G</i> associated with a partition of its vertices into <i>d</i> parts. In particular, we obtain a new sufficient condition for the rigidity of a graph <i>G</i>. As a first application, we prove the existence of an infinite family of <i>k</i>-regular <i>d</i>-rigidity-expander graphs for every <span>\\(d\\ge 2\\)</span> and <span>\\(k\\ge 2d+1\\)</span>. Conjecturally, no such family of 2<i>d</i>-regular graphs exists. Second, we show that <span>\\(a_d(K_n)\\ge \\frac{1}{2}\\left\\lfloor \\frac{n}{d}\\right\\rfloor \\)</span>, which we conjecture to be essentially tight. In addition, we study the extremal values <span>\\(a_d(G)\\)</span> attains if <i>G</i> is a minimally <i>d</i>-rigid graph.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"37 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity Expander Graphs\",\"authors\":\"Alan Lew, Eran Nevo, Yuval Peled, Orit E. Raz\",\"doi\":\"10.1007/s00493-025-00149-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Jordán and Tanigawa recently introduced the <i>d</i>-dimensional algebraic connectivity <span>\\\\(a_d(G)\\\\)</span> of a graph <i>G</i>. This is a quantitative measure of the <i>d</i>-dimensional rigidity of <i>G</i> which generalizes the well-studied notion of spectral expansion of graphs. We present a new lower bound for <span>\\\\(a_d(G)\\\\)</span> defined in terms of the spectral expansion of certain subgraphs of <i>G</i> associated with a partition of its vertices into <i>d</i> parts. In particular, we obtain a new sufficient condition for the rigidity of a graph <i>G</i>. As a first application, we prove the existence of an infinite family of <i>k</i>-regular <i>d</i>-rigidity-expander graphs for every <span>\\\\(d\\\\ge 2\\\\)</span> and <span>\\\\(k\\\\ge 2d+1\\\\)</span>. Conjecturally, no such family of 2<i>d</i>-regular graphs exists. Second, we show that <span>\\\\(a_d(K_n)\\\\ge \\\\frac{1}{2}\\\\left\\\\lfloor \\\\frac{n}{d}\\\\right\\\\rfloor \\\\)</span>, which we conjecture to be essentially tight. In addition, we study the extremal values <span>\\\\(a_d(G)\\\\)</span> attains if <i>G</i> is a minimally <i>d</i>-rigid graph.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00149-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00149-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Jordán和Tanigawa最近引入了图G的d维代数连通性\(a_d(G)\)。这是G的d维刚性的定量度量,它推广了已经得到充分研究的图的谱展开的概念。我们给出了\(a_d(G)\)的一个新的下界,这个下界是根据G的某些子图的谱展开来定义的,这些子图的顶点被划分为d个部分。特别地,我们得到了图g刚性的一个新的充分条件。作为第一个应用,我们证明了对于任意\(d\ge 2\)和\(k\ge 2d+1\), k-正则d-刚性展开图无穷族的存在性。从推测上讲,不存在这样的二维正则图族。其次,我们展示了\(a_d(K_n)\ge \frac{1}{2}\left\lfloor \frac{n}{d}\right\rfloor \),我们推测它本质上是紧密的。此外,我们还研究了当G是最小d刚性图时\(a_d(G)\)所得到的极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity Expander Graphs

Jordán and Tanigawa recently introduced the d-dimensional algebraic connectivity \(a_d(G)\) of a graph G. This is a quantitative measure of the d-dimensional rigidity of G which generalizes the well-studied notion of spectral expansion of graphs. We present a new lower bound for \(a_d(G)\) defined in terms of the spectral expansion of certain subgraphs of G associated with a partition of its vertices into d parts. In particular, we obtain a new sufficient condition for the rigidity of a graph G. As a first application, we prove the existence of an infinite family of k-regular d-rigidity-expander graphs for every \(d\ge 2\) and \(k\ge 2d+1\). Conjecturally, no such family of 2d-regular graphs exists. Second, we show that \(a_d(K_n)\ge \frac{1}{2}\left\lfloor \frac{n}{d}\right\rfloor \), which we conjecture to be essentially tight. In addition, we study the extremal values \(a_d(G)\) attains if G is a minimally d-rigid graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信