Erin M C Stewart, Jacob C Bowman, Chris C Wilson, Graham D Raby
{"title":"Local conditions drive interpopulation variation in field-based critical thermal maximum of brook trout.","authors":"Erin M C Stewart, Jacob C Bowman, Chris C Wilson, Graham D Raby","doi":"10.1093/conphys/coae086","DOIUrl":null,"url":null,"abstract":"<p><p>Individual- and population-level responses to thermal change will be pivotal for species' resilience and adaptive responses to climate change. Thermal tolerance of ectotherms has been extensively studied under laboratory conditions, but comparatively few studies have assessed intra- and interpopulation variation under natural conditions or <i>in situ</i>. We measured field critical thermal maximum (CT<sub>max</sub>) of brook trout (<i>Salvelinus fontinalis</i>) populations at twenty sites across Ontario, Canada, to assess their thermal tolerance <i>in situ</i> and examine potential factors underlying intraspecific variation in thermal performance. We modelled CT<sub>max</sub> as a function of acclimation using short-term stream temperature data to assess interpopulation variation, and used full-season stream temperatures to calculate thermal safety margins (TSM) for each population. CT<sub>max</sub> ranged between 27.41 and 30.46°C and acclimation periods between 4 and 40 days were strong predictors of site CT<sub>max</sub>, aligning closely with lab-based studies. Seasonal temperature profiles varied substantially among sites, with mean 30-day stream temperature accounting for 66% of the among-site variation in CT<sub>max</sub>. TSMs ranged between 0.51 and 15.51°C and reflected differences among site thermal regimes. Streams in watersheds with more urban or agricultural development had the lowest TSMs in addition to those that were fed by lake surface water. This work emphasizes the importance of locally based conservation and management practices that act at or below the population level, as local factors beyond acclimation temperature were partly responsible for variation in thermal tolerance and thus dictate the resiliency of brook trout under climate change.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae086"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae086","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Local conditions drive interpopulation variation in field-based critical thermal maximum of brook trout.
Individual- and population-level responses to thermal change will be pivotal for species' resilience and adaptive responses to climate change. Thermal tolerance of ectotherms has been extensively studied under laboratory conditions, but comparatively few studies have assessed intra- and interpopulation variation under natural conditions or in situ. We measured field critical thermal maximum (CTmax) of brook trout (Salvelinus fontinalis) populations at twenty sites across Ontario, Canada, to assess their thermal tolerance in situ and examine potential factors underlying intraspecific variation in thermal performance. We modelled CTmax as a function of acclimation using short-term stream temperature data to assess interpopulation variation, and used full-season stream temperatures to calculate thermal safety margins (TSM) for each population. CTmax ranged between 27.41 and 30.46°C and acclimation periods between 4 and 40 days were strong predictors of site CTmax, aligning closely with lab-based studies. Seasonal temperature profiles varied substantially among sites, with mean 30-day stream temperature accounting for 66% of the among-site variation in CTmax. TSMs ranged between 0.51 and 15.51°C and reflected differences among site thermal regimes. Streams in watersheds with more urban or agricultural development had the lowest TSMs in addition to those that were fed by lake surface water. This work emphasizes the importance of locally based conservation and management practices that act at or below the population level, as local factors beyond acclimation temperature were partly responsible for variation in thermal tolerance and thus dictate the resiliency of brook trout under climate change.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.