Boon How Low, Kaushal Krishna Kaliskar, Stefano Perna, Bernett Lee
{"title":"在检测细胞特征基因的背景下对染色质可及性标记物 H3K4me3 和 DNase 进行跨细胞分析:一种 \"全有或全无 \"的方法","authors":"Boon How Low, Kaushal Krishna Kaliskar, Stefano Perna, Bernett Lee","doi":"10.1142/S0219720025400025","DOIUrl":null,"url":null,"abstract":"<p><p>Cell identity is often associated to a subset of highly-expressed genes that define the cell processes, as opposed to essential genes that are always active. Cell-specific genes may be defined in opposition to essential genes, or via experimental means. Detection of said cell-specific genes is often a primary goal in the study of novel biosamples. Chromatin accessibility markers (such as DNase and H3K4me3) help identify actively transcribed genes, but data can be difficult to come by for entirely novel biosamples. In this study, we investigate the possibility of associating the cell-specificity status of genes with chromatin accessibility markers from different cell lines, and we suggest that the number of cell lines in which a gene is found to be marked by DNase/H3K4me3 is predictive of the essentiality status itself. We define a measure called the Cross-cellular Chromatin Openness (CCO) level, and show that it is associated with the essentiality status using two differentiation experiments. We then compare the CCO-level predictive power to existing scRNA-Seq and bulk RNA-Seq methods, showing it has good concordance when applicable.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"23 1","pages":"2540002"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-cellular analysis of chromatin accessibility markers H3K4me3 and DNase in the context of detecting cell-identity genes: An \\\"all-or-nothing\\\" approach.\",\"authors\":\"Boon How Low, Kaushal Krishna Kaliskar, Stefano Perna, Bernett Lee\",\"doi\":\"10.1142/S0219720025400025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell identity is often associated to a subset of highly-expressed genes that define the cell processes, as opposed to essential genes that are always active. Cell-specific genes may be defined in opposition to essential genes, or via experimental means. Detection of said cell-specific genes is often a primary goal in the study of novel biosamples. Chromatin accessibility markers (such as DNase and H3K4me3) help identify actively transcribed genes, but data can be difficult to come by for entirely novel biosamples. In this study, we investigate the possibility of associating the cell-specificity status of genes with chromatin accessibility markers from different cell lines, and we suggest that the number of cell lines in which a gene is found to be marked by DNase/H3K4me3 is predictive of the essentiality status itself. We define a measure called the Cross-cellular Chromatin Openness (CCO) level, and show that it is associated with the essentiality status using two differentiation experiments. We then compare the CCO-level predictive power to existing scRNA-Seq and bulk RNA-Seq methods, showing it has good concordance when applicable.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"23 1\",\"pages\":\"2540002\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720025400025\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720025400025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Cross-cellular analysis of chromatin accessibility markers H3K4me3 and DNase in the context of detecting cell-identity genes: An "all-or-nothing" approach.
Cell identity is often associated to a subset of highly-expressed genes that define the cell processes, as opposed to essential genes that are always active. Cell-specific genes may be defined in opposition to essential genes, or via experimental means. Detection of said cell-specific genes is often a primary goal in the study of novel biosamples. Chromatin accessibility markers (such as DNase and H3K4me3) help identify actively transcribed genes, but data can be difficult to come by for entirely novel biosamples. In this study, we investigate the possibility of associating the cell-specificity status of genes with chromatin accessibility markers from different cell lines, and we suggest that the number of cell lines in which a gene is found to be marked by DNase/H3K4me3 is predictive of the essentiality status itself. We define a measure called the Cross-cellular Chromatin Openness (CCO) level, and show that it is associated with the essentiality status using two differentiation experiments. We then compare the CCO-level predictive power to existing scRNA-Seq and bulk RNA-Seq methods, showing it has good concordance when applicable.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.