零维心血管模型闭环稳态的数值精度。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nick van Osta, Gitte van den Acker, Tim van Loon, Theo Arts, Tammo Delhaas, Joost Lumens
{"title":"零维心血管模型闭环稳态的数值精度。","authors":"Nick van Osta, Gitte van den Acker, Tim van Loon, Theo Arts, Tammo Delhaas, Joost Lumens","doi":"10.1098/rsta.2024.0208","DOIUrl":null,"url":null,"abstract":"<p><p>Closed-loop cardiovascular models are becoming vital tools in clinical settings, making their accuracy and reliability paramount. While these models rely heavily on steady-state simulations, accuracy because of steady-state convergence is often assumed negligible. Using a reduced-order cardiovascular model created with the CircAdapt framework as a case study, we investigated steady-state convergence behaviour across various integration methods and simulation protocols. To minimize the effect of numerical errors, we first quantified the numerical errors originating from integration methods and model assumptions. We subsequently investigate this steady-state convergence error under two distinct conditions: first without, and then with homeostatic pressure-flow control (PFC), providing a comprehensive assessment of the CircAdapt framework's numerical stability and accuracy. Our results demonstrated that achieving a clinically accurate steady state required 7-15 heartbeats in simulations without regulatory mechanisms. When homeostatic control mechanisms were included to regulate mean arterial pressure and blood volume, more than twice the number of heartbeats was needed. By simulating a variable number of heartbeats tailored to each simulation's characteristics, an efficient balance between computational cost and steady-state accuracy can be achieved. Understanding this balance is crucial as cardiovascular models progress towards clinical use.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2293","pages":"20240208"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963903/pdf/","citationCount":"0","resultStr":"{\"title\":\"Numerical accuracy of closed-loop steady state in a zero-dimensional cardiovascular model.\",\"authors\":\"Nick van Osta, Gitte van den Acker, Tim van Loon, Theo Arts, Tammo Delhaas, Joost Lumens\",\"doi\":\"10.1098/rsta.2024.0208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Closed-loop cardiovascular models are becoming vital tools in clinical settings, making their accuracy and reliability paramount. While these models rely heavily on steady-state simulations, accuracy because of steady-state convergence is often assumed negligible. Using a reduced-order cardiovascular model created with the CircAdapt framework as a case study, we investigated steady-state convergence behaviour across various integration methods and simulation protocols. To minimize the effect of numerical errors, we first quantified the numerical errors originating from integration methods and model assumptions. We subsequently investigate this steady-state convergence error under two distinct conditions: first without, and then with homeostatic pressure-flow control (PFC), providing a comprehensive assessment of the CircAdapt framework's numerical stability and accuracy. Our results demonstrated that achieving a clinically accurate steady state required 7-15 heartbeats in simulations without regulatory mechanisms. When homeostatic control mechanisms were included to regulate mean arterial pressure and blood volume, more than twice the number of heartbeats was needed. By simulating a variable number of heartbeats tailored to each simulation's characteristics, an efficient balance between computational cost and steady-state accuracy can be achieved. Understanding this balance is crucial as cardiovascular models progress towards clinical use.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2293\",\"pages\":\"20240208\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0208\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0208","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

闭环心血管模型正在成为临床设置的重要工具,使其准确性和可靠性至关重要。虽然这些模型严重依赖于稳态模拟,但由于稳态收敛而导致的精度通常被认为可以忽略不计。以使用CircAdapt框架创建的降阶心血管模型为例,研究了各种集成方法和仿真协议的稳态收敛行为。为了尽量减少数值误差的影响,我们首先量化了由积分方法和模型假设引起的数值误差。我们随后在两种不同的条件下研究了这种稳态收敛误差:首先没有,然后有稳态压力-流量控制(PFC),提供了对CircAdapt框架的数值稳定性和精度的全面评估。我们的研究结果表明,在没有调节机制的模拟中,达到临床准确的稳定状态需要7-15次心跳。当体内平衡控制机制包括调节平均动脉压和血容量时,需要的心跳次数超过两倍。通过模拟根据每个模拟特征定制的可变数量的心跳,可以实现计算成本和稳态精度之间的有效平衡。随着心血管模型走向临床应用,理解这种平衡是至关重要的。本文是主题问题“医疗保健和生物系统的不确定性量化(第2部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical accuracy of closed-loop steady state in a zero-dimensional cardiovascular model.

Closed-loop cardiovascular models are becoming vital tools in clinical settings, making their accuracy and reliability paramount. While these models rely heavily on steady-state simulations, accuracy because of steady-state convergence is often assumed negligible. Using a reduced-order cardiovascular model created with the CircAdapt framework as a case study, we investigated steady-state convergence behaviour across various integration methods and simulation protocols. To minimize the effect of numerical errors, we first quantified the numerical errors originating from integration methods and model assumptions. We subsequently investigate this steady-state convergence error under two distinct conditions: first without, and then with homeostatic pressure-flow control (PFC), providing a comprehensive assessment of the CircAdapt framework's numerical stability and accuracy. Our results demonstrated that achieving a clinically accurate steady state required 7-15 heartbeats in simulations without regulatory mechanisms. When homeostatic control mechanisms were included to regulate mean arterial pressure and blood volume, more than twice the number of heartbeats was needed. By simulating a variable number of heartbeats tailored to each simulation's characteristics, an efficient balance between computational cost and steady-state accuracy can be achieved. Understanding this balance is crucial as cardiovascular models progress towards clinical use.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信